OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 53, Iss. 9 — Sep. 1, 1963
  • pp: 1055–1071

Hyperfine Structure and Isotope Shifts in the 2537-Å Line of Mercury by a New Interferometric Method

WALTER G. SCHWEITZER, JR.  »View Author Affiliations


JOSA, Vol. 53, Issue 9, pp. 1055-1071 (1963)
http://dx.doi.org/10.1364/JOSA.53.001055


View Full Text Article

Acrobat PDF (1930 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new optical method for the precise determination of hyperfine structure and isotope shifts has been developed. A selective method of excitation, accomplished by means of a source of a single isotope operated in a magnetic field, allows the various hyperfine components to be recorded one or a few at a time. These features permit the use of long interferometers (ours were about 218 mm) of high resolving power where the whole order difference between two of the components may be very large. The isotope shifts in the 2537-Å line of mercury have been measured with a precision unequalled previously. The hyperfine structure of the odd isotopes has been measured with equal precision, though in this case the precision is less than that which has been achieved by radio frequency, double-resonance experiments. Our results are in good agreement with the double-resonance results, a fact which gives added confidence in our isotope shift results. The structure of the line relative to the isotope 198 is: 199A(-513.99±40.43); 204(-510.77±0.43); 201a(-488.96±0.33); 202(-336.964±0.15); 200(-160.29±0.15); 201b(-22.564-0.09); 198(0.00); 199B(224.40±0.23); 201c(229.23±0.51); where the units are millikaysers. The stated limits indicate the spread of the individual determinations about the mean value of the quantity as measured by their standard deviations. The magnetic dipole interaction constants for the 63P1° state are: A(199) =492.24±0.20 mK and A(201) = -181.88±0.13 mK. The nuclear magnetic moments calculated from these constants by means of the theory of Breit and Wills for intermediate coupling are: µI(199) =0.450 nm and µI(210) = -0.499 nm. The agreement between these values and the nuclear magnetic resonance values of Cagnac and Brossel (about 10%) is presumably an indication of the reliability of the theory for this case. The electric quadrupole interaction constant for the 63P10, state of Hg201 is B= -9.35±0.18 mK. This leads to the value for the quadrupole moment: Q=0.49 barn.

Citation
WALTER G. SCHWEITZER, JR., "Hyperfine Structure and Isotope Shifts in the 2537-Å Line of Mercury by a New Interferometric Method," J. Opt. Soc. Am. 53, 1055-1071 (1963)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-53-9-1055


Sort:  Author  |  Journal  |  Reset

References

  1. W. G. Schweitzer, Jr., J. Opt. Soc. Am. 51, 692 (1961).
  2. P. Jacquinot and C. Dufour, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris) 2, 91 (1948).
  3. In Eq. (1) we have neglected the index of refraction of air in the interferometer since in all of the situations we are contemplating there will be so little air inside the interferometer that the index will be negligibly different from unity.
  4. R. L. Barger and K. W. Meissner, J. Opt. Soc. Am. 48, 22 (1958).
  5. J. Blaise, J. Opt. Soc. Am. 49, 1130 (1959).
  6. P. L. Sagalyn, A. C. Melissinos, and F. Bitter, Phys. Rev. 109, 375 (1958).
  7. K. W. Meissner, Rev. Mod. Phys. 14, 68 (1942).
  8. R. L. Barger and K. G. Kessler, J. Opt. Soc. Am. 50, 651 (1960).
  9. K. G. Kessler, R. L. Barger, and W. G. Schweitzer, Jr., IRE Trans. Instr. 7, 181 (1958).
  10. R. Minkowski and H. Bruk, Z. Physik 95, 274 (1935).
  11. K. G. Kessler and W. G. Schweitzer, Jr., J. Opt. Soc. Am. 49, 199 (1959).
  12. For more detail refer to the author's Ph.D. thesis, University of Maryland, 1962 (unpublished).
  13. H. B. G. Casimir, On the Interaction between Atomic Nuclei and Electrons (Teylers Tweede Genootshap, Haarlem, 1936).
  14. C. Stager and R. Kohler, Bull. Am. Phys. Soc. 5, 274 (1960).
  15. A comprehensive review of this material may be found in H. Kopfermann, Nuclear Moments (Academic Press Inc., New York, 1958).
  16. J. Blaise, Ann. Phys. 3, 1019 (1958).
  17. A. C. Melissinos, Phys. Rev. 115, 126 (1959).
  18. K . Murakawa, J. Phys. Soc. Japan 14, 1624 (1959).
  19. S. Goudsmit, Phys. Rev. 43, 636 (1933).
  20. E. Fermi and E. Segré, Z. Physik 82, 729 (1933).
  21. J. Rosenthal and G. Breit, Phys. Rev. 41, 459 (1932).
  22. M. F. Crawford and A. L. Schawlow, Phys. Rev. 76, 1310 (1949).
  23. A. Bohr and V. Weisskopf, Phys. Rev. 77, 94 (1950).
  24. G. Breit and L. A. Wills, Phys. Rev. 44, 470 (1933).
  25. J. Brossel and F. Bitter, Phys. Rev. 86, 308 (1952).
  26. W. G. Proctor and F. C. Yu, Phys. Rev. 81, 20 (1951).
  27. B. Cagnac and J. Brossel, Compt. Rend. 249, 77 (1959).
  28. J. Blaise and H. Chantrel, J. Phys. Radium 18, 193 (1957).
  29. H. C. Wolfe, Phys. Rev. 41, 443 (1932).
  30. M. McDermott and W. L. Lichten, Phys. Rev. 119, 134 (1960).
  31. R. M. Sternheimer, Phys. Rev. 95, 736 (1954).
  32. R. M. Sternheimer, Phys. Rev. 105, 158 (1957).
  33. H. G. Dehmelt, H. Robinson, and W. Gordy, Phys. Rev. 93, 480 (1954).
  34. R. V. Pound and G. K. Wertheim, Phys. Rev. 102, 396 (1956).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited