Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Color Correction with a Single Gray Mask in a Halftone Color Print

Not Accessible

Your library or personal account may give you access

Abstract

Quantitative color correction with a single gray mask requires that the two unwanted color densities of each ink must be equal. The unwanted densities can be equalized by appropriate choice of the separation filters. By use of DIN inks with daylight illumination, it is possible to fulfill the Luther condition as well as achieve equality of the unwanted color densities. The required mask must be exposed with blue, green, and red light, the proportions of these exposures being calculated from the unwanted densities of the three inks. To calculate the superimposition of three halftone images, additivity of color density behind each separation filter and purely additive color mixture of the halftone images were assumed. The result of the calculations shows that any mixture of inks produces the same unwanted color density behind each of the three separation filters. This means that any ink mixture can be masked by the same gray mask for all three separations. The unwanted color densities of some ink mixtures have been calculated and compared with a realizable mask density, with the result that, theoretically, any ink mixture can be masked with a single mask to within ±0.01 density units. This accuracy is better than that required by a practical process, but it depends on the following three conditions: equality of unwanted color densities for the pure inks, additivity of color densities in the superimposition of the pure inks, and purely additive color mixture. Thus the system is a very simple and theoretically correct first approximation to a practical masking process. The above assumptions are generally not fulfilled, but the deviations arising are of second order and do not seem to spoil markedly the color quality of a print.

© 1964 Optical Society of America

Full Article  |  PDF Article
More Like This
Color Correction in Color Printing1

Arthur C. Hardy and F. L. Wurzburg
J. Opt. Soc. Am. 38(4) 300-307 (1948)

Theory of Masking for Color Correction. I. Masks Drawn from the Subject

Hans E. J. Neugebauer
J. Opt. Soc. Am. 42(10) 740-747 (1952)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.