Comparison of the Kirchhoff and the Rayleigh—Sommerfeld Theories of Diffraction at an Aperture
JOSA, Vol. 54, Issue 5, pp. 587-594 (1964)
http://dx.doi.org/10.1364/JOSA.54.000587
Acrobat PDF (758 KB)
Abstract
With a view to elucidating the effect of a well-known mathematical inconsistency in Kirchhoff’s diffraction theory, a comparison is made of the predictions relating to the field diffracted at an aperture, based on Kirchhoff’s theory (U_{K}) and on formulas due to Rayleigh and Sommerfeld (U_{R}). It is shown that, when the incident wave is plane or spherical, the difference δ = U_{K}-U_{R} represents a boundary wave, i.e., a wave which may be thought of as originating at each point of the edge of the aperture. It is shown further that, when the linear dimensions of the aperture are large compared with the wavelength, the boundary values of δ in the plane of the aperture change very rapidly and almost periodically from point to point, with the mean period close to the wavelength of the incident radiation. This result is shown to imply that if the linear dimensions of the aperture are large compared with the wavelength, the two theories predict essentially the same behavior for the diffracted field in the far zone, at moderate angles of diffraction.
Citation
E. WOLFE and W. MARCHAND, "Comparison of the Kirchhoff and the Rayleigh—Sommerfeld Theories of Diffraction at an Aperture," J. Opt. Soc. Am. 54, 587-594 (1964)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-54-5-587
Sort: Journal | Reset
References
- H. Poincaré, Théorie Mathematique de la Lumière (George Carré, Paris, II, 1892), pp. 187–188.
- G. Toraldo di Francia, Atti Fond. Giorgio Ronchi, Publisher, Ist. Nazl. Ottica 11, §6 (1956).
- B. B. Baker and E. T. Copson, The Mathematical Theory of Huygens' Principle (Clarendon Press, Oxford, England, 1950), 2nd ed.
- A. Sommerfeld, Optics (Academic Press Inc., New York, 1954), p. 199; see also A. Rubinowicz, Die Beugungswelle in der Kirchhoffschen Theorie der Beugung (Polska Akademi Nauk, Warszawa, 1957), pp. 77–83.
- See, for example, Lord Rayleigh, Phil. Mag. 43, 259 (1897); see also his Scientific Papers 4 (Cambridge University Press, 1903), p. 283.
- C. J. Bouwkamp, Rept. Progr. Phys. 17, 41–42 (1954).
- H. Osterberg and L. W. Smith, J. Opt. Soc. Am. 51, 1050 (1961).
- H. M. Nussenzweig, Solution of a Diffraction Problem (Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, 1957); Notas de Fisica, Suppl. AO, Vol. 3.
- S. Silver, J. Opt. Soc. Am. 52, 137 (1962).
- M. Born and E. Wolf, Principles of Optics (Pergamon Press, Ltd., London, 1959).
- N. Mukunda, J. Opt. Soc. Am. 52, 336 (1962).
- E. W. Marchand and E. Wolf, J. Opt. Soc. Am. 52, 761 (1962).
- This is so, since U_{K} and U_{I} obey this condition and therefore so does the difference δ = U_{K}-U_{I}.
- E. Wolf, Proc. Phys. Soc. (London) 74, 280 (1959), Appendix.
- The reader should not confuse the symbols δ and δ_{D}. The first represents the "error wave" defined by (2.6), and the latter symbol is used in the present section only to denote the Dirac delta function.
- K. Miyamoto and E. Wolf, J. Opt. Soc. Am. 52, 624 (1962).
- Since the integrand in (Al) is periodic in φ with period 2π, we may take the limits of integration to be φ0 and φ0+2π rather than 0 and 2π [as in (3.12)], where φ0 is any convenient constant. The reason for this formal change is to avoid having a stationary point at the end of the interval of integration [cf. (A11) below].
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
OSA is a member of CrossRef.