## Analysis of Light Fluctuations from Photon Counting Statistics

JOSA, Vol. 57, Issue 10, pp. 1201-1203 (1967)

http://dx.doi.org/10.1364/JOSA.57.001201

Acrobat PDF (612 KB)

### Abstract

It is well known that photoelectric measurements yield information about the statistical behavior of fluctuating light beams. The probability of *n* photoelectrons being ejected, in a fixed time interval, from the photosensitive surface of the photoelectric detector, upon which the light beam is normally incident, is a linear (Poisson) transform of the probability density for the intensity of the beam. With the help of some plausible assumptions, the present analysis provides solutions to the problem of inverting the Poisson transform, thus determining the probability density for the intensity from experimentally obtained photo-counting distributions. The effectiveness of the method is demonstrated by an actual inversion of a typical experimental counting distribution. The technique is of particular interest in connection with efforts to understand the statistical behavior of optical fields, especially of laser fields.

**Citation**

GABRIEL BÉDARD, "Analysis of Light Fluctuations from Photon Counting Statistics," J. Opt. Soc. Am. **57**, 1201-1203 (1967)

http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-57-10-1201

Sort: Journal | Reset

### References

- L. Mandel, Proc. Phys. Soc. (London) 72, 1037 (1958); 74, 233 (1959); 81, 1104 (1963).
- L. Mandel, in Progress in Optics, Vol. II, E. Wolf, Ed. (North-Holland Publishing Co., Amsterdam, 1963), p. 181.
- F. A. Johnson, T. P. McLean, and E. R. Pike, in Physics of Quantum Electronics, P. L. Kelley, B. Lax, and P. E. Tannenwald, Eds. (McGraw-Hill Book Co., New York, 1965), p. 706.
- C. Freed and H. A. Haus, in Physics of Quantum Electronics, P. L. Kelley, B. Lax, and P. E. Tannenwald, Eds. (McGraw-Hill Book Co., New York, 1965), p. 715.
- F. T. Arecchi, Phys. Rev. Letters 15, 912 (1965).
- C. Freed and H. A. Haus, Phys. Rev. Letters 15, 943 (1965).
- C. Freed and H. A. Haus, IEEE J. Quantum Electronics QE-2, 190 (1966).
- A. W. Smith and J. A. Armstrong, Phys. Letters 19, 650 (1966); see also Phys. Rev. Letters 16, 1169 (1966).
- F. T. Arecchi, A. Berné, and P. Bulamacchi, Phys. Rev. Letters 16, 32 (1966).
- F. A. Johnson, R. Jones, T. P. McLean, and E. R. Pike, Phys. Rev. Letters 16, 589 (1966).
- W. Martienssen and E. Spiller, Phys. Rev. Letters 16, 531 (1966).
- P. J. Magill and R. P. Soni, Phys. Rev. Letters 16, 911 (1966).
- S. Fray, F. A. Johnson, R. Jones, T. P. McLean, and E. R. Pike, Phys. Rev. 153, 357 (1967); see also F. A. Johnson, R. Jones, T. P. McLean, and E. R. Pike, Opt. Acta 14, 35 (1967).
- E. Wolf and C. L. Mehta, Phys. Rev. Letters 13, 705 (1964).
- L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).
- G. Bédard, Proc. Phys. Soc. (London) 90, 131 (1967).
- See, for example, P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill Book Co., New York, 1963), p. 947.
- See, for example, I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press Inc., New York, 1965), p. 1038.
- G. Lachs, Phys. Rev. 138, B1012 (1965).
- R. J. Glauber, in Physics of Quantum Electronics, P. L. Kelley, B. Lax, and P. E. Tannenwald, Eds. (McGraw-Hill Book Co., New York, 1965), p. 788.
- See, for example, M. G. Kendall and A. Stuart, The Advanced Theory of Statistics (Hafner Publ. Co., New York, 1958), Vol. 1, p. 148.
- W. P. Elderton, Frequency Curves and Correlation (Cambridge Univ. Press, London, 1938).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.