OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 57, Iss. 11 — Nov. 1, 1967
  • pp: 1338–1344

Image Restoration by Removal of Random-Media Degradations

PETER F. MUELLER and GEORGE O. REYNOLDS  »View Author Affiliations

JOSA, Vol. 57, Issue 11, pp. 1338-1344 (1967)

View Full Text Article

Acrobat PDF (892 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Analog spatial-filtering techniques are applied to the restoration of images degraded by propagation through random media. The image-forming system is assumed to be linear and stationary so that optically dividing the degraded image spectrum by the degrading transfer function suppresses the degradation. Images are stored and filters fabricated by controlled photographic methods. Preliminary experimental results have successfully demonstrated the feasibility of this filtering technique. In particular, degradations produced by cosine fringes and hot turbulent air were suppressed and enhanced images obtained.

PETER F. MUELLER and GEORGE O. REYNOLDS, "Image Restoration by Removal of Random-Media Degradations," J. Opt. Soc. Am. 57, 1338-1344 (1967)

Sort:  Author  |  Journal  |  Reset


  1. J. L. Harris, J. Opt. Soc. Am. 54, 606 (1964).
  2. J. L. Harris, J. Opt. Soc. Am. 54, 931 (1964).
  3. J. L. Harris, J. Opt. Soc. Am. 56, 569 (1966).
  4. R. E. Hufnagel and N. R. Stanley, J. Opt. Soc. Am. 54, 52 (1964).
  5. G. O. Reynolds and T. J. Skinner, J. Opt. Soc. Am. 54, 1302 (1964).
  6. G. B. Parrent, Jr., R. A. Shore, and T. J. Skinner, J. Math. Phys. 34, 678 (1962).
  7. M. J. Beran, J. Opt. Soc. Am. 56, 1475 (1966).
  8. M. J. Beran and G. B. Parrent, Jr., The Theory of Partial Coherence (Prentice-Hall, Inc., Englewood Cliffs, N. J., 1964).
  9. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Npw York, 1964), 2nd ed., Ch. 10,
  10. L. R. Baker, Proc. Phys. Soc. (London) B66, 975 (1953).
  11. B. J. Thompson and E. Wolf, J. Opt. Soc. Am. 47, 895 (1957); 48, 95 (1958).
  12. E. L. Bouche and P. F. Kellen, J. Opt. Soc. Am. 53, 1350A (1963).
  13. E. L. O'Neill, IRE Trans. Information Theory IT-2, 56 (1956).
  14. A. Maréchal and P. Croce, Compt. Rend. 237, 607 (1953).
  15. J. Tsujiuchi, in Progress in Optics II, E. Wolf, Ed. (North-Holland Publishing Co., Amsterdam, 1963).
  16. A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill Book Co., New York, 1962), p. 37.
  17. L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello, IRE Trans. Inform. Theory IT-6, 386 (1960).
  18. A. Vander Lugt, IEEE Trans. Inform. Theory IT-10, 139 (1964).
  19. The illumination need be spatially coherent only over intervals larger than the impulse response.
  20. The delta functions used here are not rigorously justified because, strictly speaking, the integration could not proceed over infinite limits since the cosine field is limited by the lens aperture. Thus, the lens spread function should actually be convolved about each delta function. Omitting this step keeps the notation simple without sacrificing any vital information.
  21. D. G. Falconer, Phot. Sci. Eng. 10, 133 (1966).
  22. R. F. van Ligten, J. Opt. Soc. Am. 56, 1 (1966).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited