OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 57, Iss. 11 — Nov. 1, 1967
  • pp: 1345–1349

Polarization Properties of a Simple Dielectric Rough-Surface Model

G. C. McCoYD  »View Author Affiliations

JOSA, Vol. 57, Issue 11, pp. 1345-1349 (1967)

View Full Text Article

Acrobat PDF (663 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The percent polarization of light reflected from a rough surface has been calculated using a two-dimensional, two-layer, dielectric model and the geometrical-optics approximation. The choice of this model was prompted by a desire to investigate the dependence of the percent polarization upon internal scattering and re-emission of light which has penetrated the top surface. The parameters of the model are the indices of refraction of the two layers, and the distribution of slopes of the top surface of the upper layer. Polarization curves that are qualitatively similar to lunar and laboratory-sample signatures (i.e., the percent polarization is negative at small phase angles and positive at larger phase angles) can be obtained with this model. The curves are very sensitive to changes of the distribution of slopes or the index of refraction of the upper layer, but not, for the cases considered, to changes of the index of refraction of the lower layer. For the range of parameters considered in this paper, a variation of the index of refraction of the upper layer produces a change of the albedo; the sign of the change is opposite to that of the change of the percent polarization at high phase angles (~90°). However, a variation of the structure (distribution of slopes) of the top surface produces changes of the albedo and percent polarization of the same sign.

G. C. McCoYD, "Polarization Properties of a Simple Dielectric Rough-Surface Model," J. Opt. Soc. Am. 57, 1345-1349 (1967)

Sort:  Author  |  Journal  |  Reset


  1. B. Lyot, Annales de l'Observatoire de Paris Section de Meudon, VIII No. 1 (1929), NASA Technical Translation: NASA TT F-187.
  2. A. Dollfus, "Study of the Planets by Means of the Polarization of Their Light," thesis, University of Paris, May 1955, NASA Technical Translation: NASA TT F-188.
  3. D. L. Coffeen Astron. J. 70, 403 (1965).
  4. W. Egan, L. Smith, and G. McCoyd, Grumman Research Department Report RE-250 (May 1966).
  5. W. Egan and H. Hallock, in Proceedings of the Fourth Symposium on Remote Sensing of Environment (Institute of Science and Technology, Univ. of Mich., Ann Arbor, Mich. 1966), p. 671.
  6. K. E. Torrance, E. M. Sparrow, and R. C. Birkebak, J. Opt. Soc. Am. 56, 916 (1966).
  7. J. J. Hopfield, Science 151, 1380 (1966).
  8. V. P. Rvachev and V. K. Polyanskii, Opt. Spectry (USSR) 18, 594 (1965).
  9. K. Krishen, W. W. Koepsel, and S. H. Durrani, IEEE Intern. Convention Record 14, Part 4, p. 21 (1966).
  10. D. Clarke, Monthly Notices Royal Astron. Soc. 130, 83 (1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited