Citation
GEORGE C. SHERMAN, "Application of the Convolution Theorem to Rayleigh’s Integral Formulas," J. Opt. Soc. Am. 57, 546547 (1967)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa574546
Sort:
Author 
Year 
Journal  Reset
References

J. T. Winthrop and C. R. Worthington, J. Opt. Soc. Am. 56, 588 (1966).

C. J. Bouwkamp, Rept. Progr. Phys. 17, 39 (1954).

R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1964), pp. 311–313 for list of requirements.

Kirchhoff's boundary conditions are sometimes used with Rayleigh's integral formulas to solve diffraction problems. The resulting theory is called the RayleighSommerfeld diffraction theory. Wolf and Marchand give a thorough comparison between the RayleighSommerfeld and FresnelKirchhoff theories: E. Wolf and E. W. Marchand, J. Opt. Soc. Am. 54, 587 (1964). E. W. Marchand and E. Wolf, J. Opt. Soc. Am. 56, 1712

M. Born and E. Wolf, Principles of Optics (Pergamon Press, New York, 1965), 3rd ed., Sec. 11.7, Eq. 27.

J. A. Stratton, Electromaagnetic Theory (McGrawHill Book Company, New York, 1941), p. 363.

H. G. Booker and P. C. Clemmow, Proc. Inst. Elec. Engrs (London) Pt. III, 97, 11 (1950).

J. A. Ratcliffe, Rept. Progr. Phys. 19, 188 (1956).

E. Wolf, Proc. Phys. Soc. (London) 74, 280 (1959).

D. Gabor in Progress in Optics Vol. 1, E. Wolf, editor (NorthHolland Publishing Co., Amsterdam, 1961), p. 136.

C. J. Bouwkamp, Rept. Progr. Phys. 17, 35 (1954). Eq. 2.18.

H. Osterberg, J. Opt. Soc. Am. 55, 1467 (1965).

A referee has indicated that John T. Winthrop has a derivation similar to that of this paper in his Ph.D. thesis, August 1966, written at the University of Michigan, Ann Arbor, Mich.
Booker, H. G.

H. G. Booker and P. C. Clemmow, Proc. Inst. Elec. Engrs (London) Pt. III, 97, 11 (1950).
Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, New York, 1965), 3rd ed., Sec. 11.7, Eq. 27.
Bouwkamp, C. J.

C. J. Bouwkamp, Rept. Progr. Phys. 17, 35 (1954). Eq. 2.18.

C. J. Bouwkamp, Rept. Progr. Phys. 17, 39 (1954).
Clemmow, P. C.

H. G. Booker and P. C. Clemmow, Proc. Inst. Elec. Engrs (London) Pt. III, 97, 11 (1950).
Gabor, D.

D. Gabor in Progress in Optics Vol. 1, E. Wolf, editor (NorthHolland Publishing Co., Amsterdam, 1961), p. 136.
Luneburg, R. K.

R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1964), pp. 311–313 for list of requirements.
Marchand, E. W.

Kirchhoff's boundary conditions are sometimes used with Rayleigh's integral formulas to solve diffraction problems. The resulting theory is called the RayleighSommerfeld diffraction theory. Wolf and Marchand give a thorough comparison between the RayleighSommerfeld and FresnelKirchhoff theories: E. Wolf and E. W. Marchand, J. Opt. Soc. Am. 54, 587 (1964). E. W. Marchand and E. Wolf, J. Opt. Soc. Am. 56, 1712
Osterberg, H.

H. Osterberg, J. Opt. Soc. Am. 55, 1467 (1965).
Ratcliffe, J. A.

J. A. Ratcliffe, Rept. Progr. Phys. 19, 188 (1956).
Stratton, J. A.

J. A. Stratton, Electromaagnetic Theory (McGrawHill Book Company, New York, 1941), p. 363.
Winthrop, J. T.

J. T. Winthrop and C. R. Worthington, J. Opt. Soc. Am. 56, 588 (1966).
Wolf, E.

Kirchhoff's boundary conditions are sometimes used with Rayleigh's integral formulas to solve diffraction problems. The resulting theory is called the RayleighSommerfeld diffraction theory. Wolf and Marchand give a thorough comparison between the RayleighSommerfeld and FresnelKirchhoff theories: E. Wolf and E. W. Marchand, J. Opt. Soc. Am. 54, 587 (1964). E. W. Marchand and E. Wolf, J. Opt. Soc. Am. 56, 1712

M. Born and E. Wolf, Principles of Optics (Pergamon Press, New York, 1965), 3rd ed., Sec. 11.7, Eq. 27.

E. Wolf, Proc. Phys. Soc. (London) 74, 280 (1959).
Worthington, C. R.

J. T. Winthrop and C. R. Worthington, J. Opt. Soc. Am. 56, 588 (1966).
Other

J. T. Winthrop and C. R. Worthington, J. Opt. Soc. Am. 56, 588 (1966).

C. J. Bouwkamp, Rept. Progr. Phys. 17, 39 (1954).

R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1964), pp. 311–313 for list of requirements.

Kirchhoff's boundary conditions are sometimes used with Rayleigh's integral formulas to solve diffraction problems. The resulting theory is called the RayleighSommerfeld diffraction theory. Wolf and Marchand give a thorough comparison between the RayleighSommerfeld and FresnelKirchhoff theories: E. Wolf and E. W. Marchand, J. Opt. Soc. Am. 54, 587 (1964). E. W. Marchand and E. Wolf, J. Opt. Soc. Am. 56, 1712

M. Born and E. Wolf, Principles of Optics (Pergamon Press, New York, 1965), 3rd ed., Sec. 11.7, Eq. 27.

J. A. Stratton, Electromaagnetic Theory (McGrawHill Book Company, New York, 1941), p. 363.

H. G. Booker and P. C. Clemmow, Proc. Inst. Elec. Engrs (London) Pt. III, 97, 11 (1950).

J. A. Ratcliffe, Rept. Progr. Phys. 19, 188 (1956).

E. Wolf, Proc. Phys. Soc. (London) 74, 280 (1959).

D. Gabor in Progress in Optics Vol. 1, E. Wolf, editor (NorthHolland Publishing Co., Amsterdam, 1961), p. 136.

C. J. Bouwkamp, Rept. Progr. Phys. 17, 35 (1954). Eq. 2.18.

H. Osterberg, J. Opt. Soc. Am. 55, 1467 (1965).

A referee has indicated that John T. Winthrop has a derivation similar to that of this paper in his Ph.D. thesis, August 1966, written at the University of Michigan, Ann Arbor, Mich.
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's CitedBy Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.