OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 59, Iss. 3 — Mar. 1, 1969
  • pp: 319–327

Propagation of Spherical Waves in Locally Homogeneous Random Media

FREDERICK P. CARLSON and AKIRA ISIHMARU  »View Author Affiliations

JOSA, Vol. 59, Issue 3, pp. 319-327 (1969)

View Full Text Article

Acrobat PDF (871 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The propagation of spherical waves in a turbulent medium is considered. In particular, the case of nonstationary statistics is examined in general and then applied to the specific case of vertical propagation in the atmosphere. The analysis uses the Rytov approximation and the perturbation technique of J. B. Keller. The model of Cn2(h) variation is exponential and similar to that utilized by Tatarski.

The results are compared to other known results for plane and spherical waves in both homogeneous and locally homogeneous random media. In addition, the optimum aperture results of D. L. Fried are examined for this nonstationary case. The marked dependence on the height of the observer and parameters describing the turbulence distribution are noted.

FREDERICK P. CARLSON and AKIRA ISIHMARU, "Propagation of Spherical Waves in Locally Homogeneous Random Media," J. Opt. Soc. Am. 59, 319-327 (1969)

Sort:  Author  |  Journal  |  Reset


  1. V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill Book Co., New York, 1961).
  2. R. A. Silverman, IEEE Trans. Inform. Theory IT-3, 182 (1957).
  3. R. A. Silverman, Proc. Cambridge Phil. Soc. 54, 530 (1958).
  4. R. A. Silverman, Communs. Pure and Appl. Math. 12, 373 (1959).
  5. See Ref. 7, for a review of the validity of the Rytov procedure, particularly for the optical case.
  6. J. B. Keller, Proc. Sym. in Appl. Math., Am. Math. Soc. 13, 227 (1962).
  7. J. W. Strohbehn, Proc. IEEE 56, 1301 (1968); D. L. Fried, Proc. IEEE 55, 57 (1967).
  8. F. P. Carlson, dissertation, University of Washington (1967).
  9. See Appendix A for a different approach to the terms in the Rytov approximation.
  10. A. D. Wheelon, J. Res. Natl. Bur. Std. (U. S.) Radio Prop. 63D, 1959.
  11. A. N. Kolmogorov, Compt. Rend. Doklady Akad. Nauk U.S.S.R. 30, 301 (1941), contained in S. K. Friedlander and L. Topper, Turbulence (Interscience Publishers, Inc., John Wiley & Sons, Inc., New York, 1961).
  12. A. M. Yaglom, An Introduction to the Theory of Stationary Random Functions (Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962).
  13. [Equation].
  14. D. L. Fried, J. Opt. Soc. Am. 56, 1380 (1966).
  15. W. E. Gordon, Proc. IRE 43, 23 (1955).
  16. I. Goldstein, P. A. Miles, and A. Chabot, Proc. IEEE 53, 1172 (1965).
  17. R. A. Schmeltzer, Quart. Appl. Math. 24, 339 (1967).
  18. W. Magnus and F. Oberhettinger, Formulas to Theorems for the Functions of Mathematical Physics (Chelsea Publishing Co., New York, 1949).
  19. D. L. Fried, J. Opt. Soc. Am. 57, 175 (1967).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited