OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 61, Iss. 3 — Mar. 1, 1971
  • pp: 386–398

Spatial Noise in Optical Data-Storage Systems Using Amplitude Fourier-Transform Holograms

B. HILL  »View Author Affiliations


JOSA, Vol. 61, Issue 3, pp. 386-398 (1971)
http://dx.doi.org/10.1364/JOSA.61.000386


View Full Text Article

Acrobat PDF (1100 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Calculations are performed to study the noise in the detector plane of an optical data-storage system with Fourier-transform holograms, caused by noise in the storage material. The signal-to-background ratio (SBR) and the signal-to-noise ratio (SNR) of the output signals in the detector plane are defined and calculated. Exact solutions are obtained by assuming gaussian-probability densities for amplitude and phase noise in the storage material.

Citation
B. HILL, "Spatial Noise in Optical Data-Storage Systems Using Amplitude Fourier-Transform Holograms," J. Opt. Soc. Am. 61, 386-398 (1971)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-61-3-386


Sort:  Author  |  Journal  |  Reset

References

  1. V. A. Vitals, IBM Tech. Disclosure Bull. 8, 1581 (1966).
  2. F. M. Smits and L. E. Gallaher, Bell System Tech. J. 46, 1267 (1968).
  3. L. K. Anderson, Bell Lab. Record 46, 318 (1968).
  4. R. M. Langdon, Radio. Electr. Eng. 38, 369 (1969).
  5. A. L. Mikaeliane, V. I. Bobrinev, S. M. Naumov, and L. Z. Sokolova, IEEE J. QE-6, 4, 193 (1970).
  6. J. W. Goodman, J. Opt. Soc. Am. 57, 493 (1967).
  7. A. Kozma, J. Opt. Soc. Am. 58, 436 (1968).
  8. S. Löwenthal, J. Serres, and H. Arsenault, Opt. Commun. 1, 438 (1970).
  9. R. Röhler, Informationstheorie in der Optik (Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1967).
  10. N. D. Diamantides, Appl. Opt. 8, 819 (1969).
  11. W. B. Davenport, Jr. and W. L. Root, Introduction to the Theory of Random Signals and Noise (McGraw-Hill, New York, 1958).
  12. F. H. Lange, Korrelationselektronik (VEB Verlag, Berlin, 1962).
  13. I. J. Freeman, Principles of Noise (Wiley, New York, 1958).
  14. K. Stange and H. J. Henning, Formeln und Tabellen der Mathematischen Statistik (Springer, Berlin, 1966).
  15. E. L. O'Neill, Introduction to Statistical Optics (Addison–Wesley, Reading, Mass., 1963), p. 100.
  16. The assumption of a gaussian probability density for the noise function t˜N(x,y) apparently contradicts the restriction | t(x,y)|≤1. Nevertheless, the assumption can still be true if σt is small compared to 1, because in this case, the values of t˜N for which | tN|≥1≫σt have a very small probability density and may therefore be neglected.
  17. F. T. S. Yu, Appl. Opt. 8, 2483 (1969).
  18. C. B. Burckhardt, Appl. Opt. 9, 3, 695 (1970).
  19. G. W. Stroke, An Introduction to Coherent Optics and Holography (Academic, New York, 1966), p. 196.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited