OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 61, Iss. 8 — Aug. 1, 1971
  • pp: 1092–1098

Mechanism of the Short-Duration Nitrogen Afterglow

O. OLDENBERG  »View Author Affiliations


JOSA, Vol. 61, Issue 8, pp. 1092-1098 (1971)
http://dx.doi.org/10.1364/JOSA.61.001092


View Full Text Article

Acrobat PDF (943 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The short-duration afterglow or pink afterglow of nitrogen is superimposed on the well-known long-duration, Lewis—Rayleigh afterglow as a bright flash of milliseconds duration, separated from the discharge by a short delay. The spectrum shows the same band systems as does the discharge, with different relative intensities. The flash of light coincides with flashes of heat and ionization. A comprehensive mechanism, including the various modifications of the short-duration afterglow, is presented. During the delay time, metastable molecules, generated by the ever-present Lewis—Rayleigh afterglow, accumulate until their concentration is sufficient for collisions between two metastables to occur. These, supported by high vibration, generate ions N2+. Their excitation is due to fast electrons or highly vibrating molecules. The periodic occurrence of the pink afterglow is attributed to temperature effects. The blue and green afterglows are explained by modifications of the same idea.

Citation
O. OLDENBERG, "Mechanism of the Short-Duration Nitrogen Afterglow," J. Opt. Soc. Am. 61, 1092-1098 (1971)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-61-8-1092


Sort:  Author  |  Journal  |  Reset

References

  1. J. Kaplan, Phys. Rev. 42, 807 (1932); 44, 947 (1933); 45, 675 (1934); 48, 800 (1935).
  2. K. D. Bayes and G. B. Kistiakowsky, J. Chem. Phys. 32, 992 (1960).
  3. G. E. Beale and H. P. Broida, J. Chem. Phys. 31, 1030 (1959).
  4. J. F. Noxon, J. Chem. Phys. 36, 926 (1962).
  5. A. M. Bass, J. Chem. Phys. 40, 695 (1964).
  6. Y. Tanaka, F. R. Innes, A. S. Jursa, and M. Nakamura, J. Chem. Phys. 42, 1183 (1965).
  7. C. F. Fairchild, A. B. Prag, and K. C. Clark, J. Chem. Phys. 39, 794 (1963).
  8. S. N. Foner and R. L. Hudson, J. Chem. Phys. 45, 40 (1966).
  9. J. E. Morgan and H. I. Schiff, Can. J. Chem. 41, 903 (1963).
  10. H. P. Broida and I. Tanaka, J. Chem. Phys. 36, 236 (1962).
  11. D. D. Briglia, unpublished results. See P. Warneck, J. Geophys. Res. 74, 396 (1969).
  12. W. H. Kasner and M. A. Biondi, Phys. Rev. 137A, 317 (1965).
  13. V. Čermák and L. Herman, Coll. Czech. Chem. Comm. 30, 1343 (1965).
  14. F. R. Innes and O. Oldenberg, J. Chem. Phys. 37, 2427 (1962).
  15. R. A. Young, R. L. Sharpless, and R. J. Stringham, J. Chem. Phys. 40, 251 (1964).
  16. K. M. Evenson and D. S. Burch, J. Chem. Phys. 45, 2450 (1966).
  17. O. Oldenberg, Air Force Cambridge Research Laboratories, Physical Sciences Research Papers, Nos. 323 (1967) and 390 (1969).
  18. N. P. Carleton and O. Oldenberg, J. Chem. Phys. 36, 3460 (1962).
  19. O. Oldenberg, Phys. Rev. 90, 727 (1953).
  20. S. N. Foner and R. L. Hudson, J. Chem. Phys. 37, 1662 (1962).
  21. H. H. Brömer and F. Döbler, Z. Naturforsch. 20A, 599 (1965); Z. Physik 185, 278 (1965).
  22. R. B. Bryan, Ph.D. thesis, Harvard University, 1951; R. B. Bryan, R. B. Holt, and O. Oldenberg, Phys. Rev. 106, 83 (1957).
  23. D. E. Shemansky and N. P. Carleton, J. Chem. Phys. 51, 682 (1969).
  24. D. E. Shemansky, J. Chem. Phys. 51, 689 (1969).
  25. F. R. Gilmore, unpublished results.
  26. C. Kenty, in 17th Annual Gaseous Electronics Conference, Bull. Am. Phys. Soc. 10, 190 (1965); R. S. Freund, J. Chem. Phys. 50, 3734 (1969).
  27. M. A. Biondi, Phys. Rev. 82, 453 (1951).
  28. R. E. Lund and H. J. Oskam, Z. Physik 219, 131 (1968); J. Chem. Phys. 48, 114 (1968).
  29. D. H. Stedman and D. W. Setser, J. Chem. Phys. 50, 2256 (1968).
  30. A. R. De Monchy, G. N. Hays, C. J. Tracy, and H. J. Oskam, Bull. Am. Phys. Soc. 15, 428 (1970).
  31. E. C. Zipf, Can. J. Chem. 47, 1863 (1969).
  32. K. L. Wray, J. Chem. Phys. 44, 623 (1966).
  33. H. H. Brömer and K. Fette, Z. Physik 168, 411 (1962).
  34. C. H. Dugan, Z. Chem. Phys. 47, 1512 (1967). See S.-L. Chen and J. M. Goodings, J. Chem. Phys. 50, 4335 (1969).
  35. C. Papaliolios, Ph.D. thesis, Harvard University, 1965.
  36. I. R. Hurle, J. Chem. Phys. 41, 3592 (1964).
  37. B. Brocklehurst and R. W. Nicholls, Nature 223, 824 (1969).
  38. C. N. Hinshelwood, Kinetics of Chemical Change (Clarendon, Oxford, 1940), p. 144.
  39. S. Glasstone, K. J. Laidler, and H. Eyring, Theory of Rate Processes (McGraw—Hill, New York, 1941), Fig. 41.
  40. B. Cary, Phys. Fluids 8, 26 (1965).
  41. R. J. Strutt, Proc. Roy. Soc. (London) A85, 219 (1911).
  42. Y. Tanaka and A. S. Jursa, J. Opt. Soc. Am. 51, 1239 (1961).
  43. A. B. Prag and K. C. Clark, J. Chem. Phys. 39, 799 (1963).
  44. R. A. Young, Can. J. Chem. 44, 1171 (1966).
  45. R. A. Young and A. S. Gilbert, J. Chem. Phys. 48, 895 (1968).
  46. D. I. Walton, M. J. McEwan, and L. F. Phillips, Can. J. Chem. 43, 3095 (1965).
  47. R. W. B. Pearse and A. G. Gaydon, Identification of Molecular Spectra, 3rd ed. (Chapman and Hall, London, 1963), plate 3.
  48. A. E. Grün, Z. Naturforsch. 9A, 55, 1017 (1954).
  49. G. Herzberg, Z. Physik 49, 526 (1928).
  50. M. Peyron, L. T. My, and M. Jaccaud, IEEE. QE6, 179 (1969).
  51. S. W. Benson, unpublished results.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited