Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Broadening of Infrared Absorption Lines at Reduced Temperatures, II. Carbon Monoxide in an Atmosphere of Carbon Dioxide

Not Accessible

Your library or personal account may give you access

Abstract

The strengths of the rotational lines in the R branch of the CO fundamental have been determined at temperatures of 298, 202, and 132 K by means of a high-resolution spectrograph. The results can be used to determine line strengths at other temperatures by means of the Herman–Wallis relation or by considerations of the populations of the rotational levels in the ground vibrational state. Parameters describing the self-broadening and carbon dioxide broadening of CO lines have been determined at 298 and 202 K. The results are compared with other recent experimental and theoretical studies.

© 1972 Optical Society of America

Full Article  |  PDF Article
More Like This
Broadening of Infrared Absorption Lines at Reduced Temperatures: Carbon Dioxide†

Lloyd D. Tubbs and Dudley Williams
J. Opt. Soc. Am. 62(2) 284-289 (1972)

Infrared Absorptance of Carbon Monoxide at Low Temperatures*†

Gary M. Hoover and Dudley Williams
J. Opt. Soc. Am. 59(1) 28-33 (1969)

Broadening of infrared absorption lines at reduced temperatures, III. Nitrous oxide*

Lloyd D. Tubbs and Dudley Williams
J. Opt. Soc. Am. 63(7) 859-863 (1973)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.