OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 62, Iss. 4 — Apr. 1, 1972
  • pp: 479–486

Absorption and Emission of Evanescent Photons

C. K. CARNIGLIA, L. MANDEL, and K. H. DREXHAGE  »View Author Affiliations


JOSA, Vol. 62, Issue 4, pp. 479-486 (1972)
http://dx.doi.org/10.1364/JOSA.62.000479


View Full Text Article

Acrobat PDF (869 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Experiments have been carried out to investigate the excitation of molecules by evanescent light, and the emission of evanescent light in the fluorescence of excited molecules. It is confirmed that the absorption proceeds at a rate proportional to the second-order (normally ordered) product of the complex field amplitude, whether the light field is homogeneous or evanescent, and that the emission process follows a reciprocity principle.

© 1972 Optical Society of America

Citation
C. K. CARNIGLIA, L. MANDEL, and K. H. DREXHAGE, "Absorption and Emission of Evanescent Photons," J. Opt. Soc. Am. 62, 479-486 (1972)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-62-4-479


Sort:  Author  |  Journal  |  Reset

References

  1. G. Quincke, Ann. Phys. Chem. 127, 1 (1866).
  2. E. E. Hall, Phys. Rev. 15, 73 (1902).
  3. P. Selenyi, Compt. Rend. 157, 1408 (1913).
  4. P. Fröhlich, Ann. Physik (4) 65, 577 (1921).
  5. D. D. Coon, Am. J. Phys. 34, 240 (1966).
  6. For example, see H. Bücher, K. H. Drexhage, M. Fleck, H. Kuhn, D. Möbius, F. P. Schäfer, J. Sondermann, W. Sperling, P. Tillmann, and J. Wiegand, Mol. Cryst. 2, 199 (1967) and K. H. Drexhage, Sci. Am. 222, 108 (1970).
  7. H. Nassenstein, Phys. Letters 28A, 249 (1968); also Optik 29, 597 (1969) and 30, 44 (1969).
  8. O. Bryngdahl, J. Opt. Soc. Am. 59, 1645 (1969).
  9. R. N. Smartt, Appl. Opt. 9, 970 (1970).
  10. C. J. Bouwkamp, Rept. Progr. Phys. 17, 39 (1954).
  11. E. Wolf, Proc. Phys. Soc. (London) 74, 269 (1959).
  12. G. Toraldo di Francia, Nuovo Cimento 16, 61 (1960).
  13. P. C. Clemmow, The Plane Wave Spectrum Representation of Electromagnetic Fields, Ist ed. (Pergamon, New York, 1966).
  14. G. C. Sherman, J. Opt. Soc. Am. 57, 1160 (1967); 57, 1490 (1967).
  15. J. R. Shewell and E. Wolf, J. Opt. Soc. Am. 58, 1596 (1968).
  16. E. Lalor, J. Opt. Soc. Am. 58, 1235 (1968).
  17. A. Walther, J. Opt. Soc. Am. 58, 1256 (1968); 59, 1325 (1969).
  18. R. Asby and E. Wolf, J. Opt. Soc. Am. 61, 52 (1971).
  19. P. J. Leurgans and A. F. Turner, J. Opt. Soc. Am. 37, 983(A) (1947).
  20. See, for example, N. J. Harrick, Internal Reflection Spec-Iroscopy (Wiley-Interscience, New York, 1967).
  21. C. Carniglia and L. Mandel, Phys. Rev. D 3, 280 (1971).
  22. See, for example, M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1970), p. 38.
  23. The experiments were actually conducted with two different dielectrics on opposite sides of the interface, rather than with one dielectric and air. However as the ratio n of the two refractive indices is the only significant parameter, we have simplified the treatment.
  24. L. Mandel, E. C. G. Sudarshan, and E. Wolf, Proc. Phys. Soc. (London) 84, 435 (1964).
  25. R. J. Glauber, Phys. Rev. 131, 2766 (1963).
  26. The set of fatty-acid layers constitutes a uniaxial, birefringent medium, whose optic axis is perpendicular to the plane of the layers. By using only T.E.-polarized light in the experiment, we avoided complications arising from the birefringence. The ordinary refractive index of the layers matched the refractive index of the glass slide, so that the fatty-acid-glass interface had no effect on the light beam passing through.
  27. See also L. M. Brekhovskikb, Waves in Layered Medio (Academic, New York, 1960).
  28. K. Miyamoto and E. Wolf, J. Opt. Soc. Am. 52, 615 (1962).
  29. E. Lalor and G. C. Sherman, unpublished.
  30. The refractive index of the Clerici solution varied over a period of days, but the index ratio was determined after each experimental run. That is why different n values were chosen for the theoretical curves in Figs. 5 and 7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited