OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 62, Iss. 5 — May. 1, 1972
  • pp: 634–638

Effects of Optical Anisotropy of Aggregated Silver Films on Ellipsometric Determination of n, k, and d

TOMUO YAMAGUCHI, SADAFUMI YOSHIDA, and AKIRA KINBARA  »View Author Affiliations


JOSA, Vol. 62, Issue 5, pp. 634-638 (1972)
http://dx.doi.org/10.1364/JOSA.62.000634


View Full Text Article

Acrobat PDF (636 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical properties of vacuum-deposited silver films have been investigated by ellipsometry. A method of calculating optical parameters has been developed and applied to this investigation. On the assumption that the film is optically isotropic, n, k, and d are simultaneously determined by the measured values of ψ, Δ, and the transmittance of p-polarized light. For very thin films, those isotropic parameters show an anomalous behavior, and for thinner films, the computation for determining them does not converge. The computation converges only when the optical anisotropy of the film is taken into account, and the convergent range of the anisotropic parameters is determined. The convergence range includes the anisotropic parameters predicted by the theory for the optical properties of an aggregated silver film. An anomalous increase of the isotropic parameters with decrease of thickness, for thinner films, arises from regarding the anisotropic film as isotropic.

Citation
TOMUO YAMAGUCHI, SADAFUMI YOSHIDA, and AKIRA KINBARA, "Effects of Optical Anisotropy of Aggregated Silver Films on Ellipsometric Determination of n, k, and d," J. Opt. Soc. Am. 62, 634-638 (1972)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-62-5-634


Sort:  Author  |  Journal  |  Reset

References

  1. D. Malé, Compt. Rend. 230B, 1349 (1950).
  2. K. Ishiguro and G. Kuwahara, J. Phys. Soc. Japan 6, 71 (1951).
  3. L. Ward, A. Nag, and L. C. W. Dixon, Brit. J. Appl. Phys. 2, 301 (1969).
  4. T. Yamaguchi, S. Yoshida, and A. Kinbara, Japan J. Appl. Phys. 8, 559 (1969).
  5. R. S. Sennett and G. D. Scott, J. Opt. Soc. Am. 40, 203 (1950).
  6. O. S. Heavens, Optical Properties of Thin Solid Films (Butterworths, London, 1955), p. 176.
  7. E. David, Z. Physik 114, 389 (1939); H. Schopper, Z. Physik 130, 565 (1951); S. Yamaguchi, J. Phys. Soc. Japan 15, 1577 (1960); G. Rasigni and P. Rouard, J. Opt. Soc. Am. 53, 604 (1963) G. Henderson and C. Weaver, J. Opt. Soc. Am. 56, 1551 (1966); A. Carlan, Ann. Phys. (Paris) 4, 5 (1969); A. Donnadieu, Thin Solid Films 6, 249 (1970).
  8. S. Yoshida, T. Yamaguchi, and A. Kinhara, J. Opt. Soc. Am. 61, 62 (1971).
  9. R. Philip and J. Trompette, J. Phys. Radium 18, 92 (1957).
  10. J. Trompette, Ann. Phys. (Paris) 5, 915 (1960); N. Emeric and A. Emeric, Thin Solid Films 1, 13 (1967).
  11. P. Rouard and P. Bousquet, in Progress in Optics IV, edited by E. Wolf (North-Holland, Amsterdam, 1965), p. 145.
  12. W. G. Oldham, Surface Sci. 16, 97 (1969).
  13. S. Yoshida, T. Yamaguchi, and A. Kinbara, J. Opt. Soc. Am. 61, 463 (1971).
  14. F. L. McCrackin and J. P. Colson, in Ellipsometry in the Measurement of Surfaces and Thin Films, edited by E. Passaglia, R. R. Stromberg, and J. Kruger, Natl. Bur. Std. (U. S.) Misc. Publ. 256 (U. S. Government Printing Office, Washington, D. C., 1964); J. M. Bennett and M. J. Booty, Appl. Opt. 5, 41 (1966); P. O. Nilsson, Appl. Opt. 7, 435 (1968); J. Shewchun and E. C. Rowe, J. Appl. Phys. 41, 4128 (1970).
  15. Optical properties of aggregated metal films have also been explained in terms of Maxwell-Garnett (MG) theory, which is based on the three-dimensional (3D) distribution of spherical particles [cf. R. H. Doremus, J. Appl. Phys. 37, 2775 (1966)]. The MG equation (∊ - ∊a) / (∊ + 2∊a) = q (∊ i - ∊ a) / (∊i + 2∊a) is identical with the equation for the case ƒ (the depolarizing factor) = ⅓ (i.e., spherical shape) and β (the interaction term) =-q/3 in the equation of RE model having a single value of the axial ratio [Eq. (9) in Ref. 6]. ∊ - ∊i = q(∊i - ∊ a) / [1 + (ƒ + β) (∊i - ∊a) / ∊a]. In the 2D system, β has different values of opposite sign for electric fields parallel and perpendicular to the substrate, which causes the anisotropic property, whereas in the 3D system, β has the unique value -q/3.
  16. F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. L. Steinberg, J. Res. Natl. Bur. Std. (U. S.) 67A, 363 (1963); F. Lukes, Surface Sci. 16, 74 (1969).
  17. F. L. McCrackin, J. Opt. Soc. Am. 60, 57 (1970); R. M. A. Azzam and N. M. Bashara, J. Opt. Soc. Am. 61, 773 (1971).
  18. R. J. Archer and C. V. Shank, J. Opt. Soc. Am. 57, 191 (1967); D. A. Holmes and D. L. Feucht, J. Opt. Soc. Am. 57, 466 (1967); W. G. Oldham, J. Opt. Soc. Am. 57, 617 (1967); P. H. Smith, Surface Sci. 16, 34 (1969).
  19. H. G. Jerrard, Surface Sci. 16, 67 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited