Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Crowded Emulsions: Granularity Theory for Multilayers

Not Accessible

Your library or personal account may give you access

Abstract

A crowded photographic emulsion is viewed as a sandwich of stacked, crowded monolayers. An earlier renewal model of granularity in a crowded monolayer, combined with a new analysis of the general way in which granularity propagates through layers, leads to predictions of the granularity of the multilayer sandwich as a function of the number of layers. For a fixed concentration of grains per unit projected area in the sandwich, rms density fluctuations increase as the number of layers decreases because rms transmittance fluctuations decrease at a slower rate than mean transmittance. These changes are similar to the entropy decrease of grain configurations in the emulsion. For sandwiches consisting of at least 15 layers having a maximum density not greater than 2, the change of rms density fluctuations vs mean density for an exposure series is accurately predicted by the honest random-dot model. Any discrepancy between the theoretical predictions of the honest random-dot model and experimental data for normal emulsions cannot be attributed solely to the neglect of crowding constraints by that model.

© 1972 Optical Society of America

Full Article  |  PDF Article
More Like This
Crowded Emulsions: Granularity Theory for Monolayers*

Eugene A. Trabka
J. Opt. Soc. Am. 61(6) 800-810 (1971)

Relation Between Granularity and Density for a Random-Dot Model

B. E. Bayer
J. Opt. Soc. Am. 54(12) 1485-1490 (1964)

Crowded Emulsions: Renewal Theory vs Statistical Mechanics of Monolayers

Eugene A. Trabka
J. Opt. Soc. Am. 62(10) 1238-1239 (1972)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (55)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved