OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 63, Iss. 4 — Apr. 1, 1973
  • pp: 399–407

Limitations of fringe-parameter estimation at low light levels

J. F. Walkup and J. W. Goodman  »View Author Affiliations


JOSA, Vol. 63, Issue 4, pp. 399-407 (1973)
http://dx.doi.org/10.1364/JOSA.63.000399


View Full Text Article

Acrobat PDF (926 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fundamental limitations of estimating the amplitudes and phases of interference fringes at low light levels are determined by the finite number of photoevents registered in the measurement. By modeling the receiver as a spatial array of photon-counting detectors, results are obtained that permit specification of the minimum number of photoevents required for estimation of fringe parameters to a given accuracy. Both a discrete Fourier-transform estimator and an optimum joint maximum-likelihood estimator are considered. In addition, the Cramér-Rao statistical error bounds are derived, specifying the limiting performance of all unbiased estimators in terms of the collected light flux. The performance of the spatial sampling receiver is compared with that of an alternate technique for fringe-parameter estimation that uses a barred grid and temporal sampling of a moving fringe.Index Headings: Coherence; Detection; Interferometry.

© 1973 Optical Society of America

Citation
J. F. Walkup and J. W. Goodman, "Limitations of fringe-parameter estimation at low light levels," J. Opt. Soc. Am. 63, 399-407 (1973)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-63-4-399


Sort:  Author  |  Journal  |  Reset

References

  1. W. I. Beavers, Astron. J. 68, 273 (1963).
  2. J. L. Elliot, M. S. thesis, Department of Physics, Massachusetts Institute of Technology (1965).
  3. W. I. Beavers and W. D. Swift, Appl. Opt. 7, 1975 (1968).
  4. E. S. Kulagin, Opt. Spektrosk. 23, 839 (1967) [Opt. Spectrosc. 23, 459 (1967)].
  5. J. S. Wilczynski, J. Opt. Soc. Am. 57, 579 (1967).
  6. W. T. Rhodes, Ph.D. thesis, Department of Electrical Engineering, Stanford University (1971) (University Microfilms, Ann Arbor, Mich., order No. 72-16 780).
  7. M. Born and E. Wolf, Principles of Optics, 2nd ed. (Pergamon, New York, 1964), p. 501.
  8. Reference 7, p. 515.
  9. L. Mandel, in Progress in Optics, II, edited by E. Wolf (North-Holland, Amsterdam, 1963), pp. 181–248.
  10. L. Mandel, Proc. Phys. Soc. Lond. 74, 233 (1959).
  11. G. D. Bergland, IEEE Spectrum 6 (7), 41 (1969).
  12. J. Walkup, Ph.D. thesis, Department of Electrical Engineering, Stanford University (1971) (University Microfilms, Ann Arbor, Mich., order No. 72-11 685).
  13. P. Beckmann, Probability in Communication Engineering (Harcourt, Brace, and World, New York, 1967), p. 106.
  14. Reference 12, p. 157.
  15. Reference 13, p. 118.
  16. J. B. Thomas, Introduction to Statistical Communication Theory (Wiley, New York, 1969), p. 160.
  17. Reference 16, p. 167.
  18. Reference 16, p. 161.
  19. Reference 12, p. 39.
  20. D. C. Rife and G. A. Vincent, Bell Syst. Tech. J. 49, 197 (1970).
  21. Reference 12, p. 44.
  22. R. Deutsch, Estimation Theory (Prentice-Hall, Englewood Cliffs, N. J., 1965).
  23. H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I (Wiley, New York, 1968).
  24. Reference 12, p. 49.
  25. It is possible to maximize Α0 with respect to the expanded parameter set (ϕ,xt, V,as). However, of the four equations generated, only three are linearly independent. The estimate V obtained is identical with Eq. (37).
  26. J. W. Goodman, J. Opt. Soc. Am. 60, 506 (1970).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited