OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 63, Iss. 4 — Apr. 1, 1973
  • pp: 416–419

Image formation using self-imaging techniques

Olof Bryngdahl  »View Author Affiliations


JOSA, Vol. 63, Issue 4, pp. 416-419 (1973)
http://dx.doi.org/10.1364/JOSA.63.000416


View Full Text Article

Acrobat PDF (429 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two situations in which self-imaging techniques can be applied to advantage are presented: the pinhole-array camera and transmission through an optical fiber. The experimental procedure and results are presented for the case of a pinhole array illuminated with an extended incoherent object distribution. In the Fresnel-image planes, more images are formed than there are pinholes in the array, which is in contrast to the case of the pinhole-array camera. An optical fiber or thin film working in the kaleidoscope mode may form an image, provided that its length fulfills the self-imaging condition.

Citation
Olof Bryngdahl, "Image formation using self-imaging techniques," J. Opt. Soc. Am. 63, 416-419 (1973)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-63-4-416


Sort:  Author  |  Journal  |  Reset

References

  1. S. Lu, Proc. Inst. Electr. Eng. 56, 116 (1968); G. Groh, Appl. Opt. 7, 1643 (1968); Appl. Opt. 8, 967 (1969); S. Lowenthal, A. Werts, and M. Rembault, C.R. Acad. Sci. B 267, 120 (1968).
  2. H. F. Talbot, Philos. Mag. 9, 401 (1836); Lord Rayleigh, Philos. Mag. 11, 196 (1881); A. Winkelmann, Ann. Phys. (Leipz.) 27, 905 (1908); H. Weisel, Ann. Phys. (Leipz.) 33, 995 (1910); M. Wolfke, Ann. Phys. (Leipz.) 40, 194 (1913).
  3. E. Lau, Ann. Phys. (Leipz.) 2, 417 (1948).
  4. J. M. Cowley and A. F. Moodie, Proc. Phys. Soc. Lond. B 70, 486 (1957); Proc. Phys. Soc. Lond. B 70, 497 (1957); Proc. Phys. Soc. Lond. B 70, 505 (1957).
  5. E. A. Hiedemann and M. A. Breazeale, J. Opt. Soc. Am. 49, 372 (1959).
  6. G. L. Rogers, Proc. Phys. Soc. Lond. B 157, 83 (1962); K. Shimizu, Exp. Mech. News (1), 3 (1970), and Mech. Res. News (7), 1 (1971) (both in Japanese).
  7. J. T. Winthrop and C. R. Worthington, J. Opt. Soc. Am. 55, 373 (1965); J. T. Winthrop, Thesis,University of Michigan (1966) (University Microfilms, Inc., Ann Arbor, Mich., order No. 67-8369).
  8. W. D. Montgomery, J. Opt. Soc. Am. 57, 772 (1967).
  9. Yu. N. Denisyuk, N. M. Ramishvili, and V. V. Chavchanidze, Opt. Spektrosk. 30, 1130 (1971) [Opt. Spectrosc. 30, 603 (1971)]; H. Dammann, G. Groh, and M. Kock, Appl. Opt. 10, 1454 (1971).
  10. P. A. Newman and V. E. Rible, Appl. Opt. 5, 1225 (1966).
  11. H. Osterberg and L. W. Smith, J. Opt. Soc. Am. 54, 1073 (1964); J. Opt. Soc. Am. 54, 1078 (1964).
  12. T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, and H. Matsumura, IEEE J. Quantum Electron. 5, 331 (1969).
  13. See, for example,J. H. Myer, Appl. Opt. 10, 2179 (1971); A. R. Shulman, Optical Data Processing (Wiley, New York, 1970), pp. 25 and 36.
  14. Invented by Sir David Brewster, British Patent Specification No. 4136, 30 August 1817.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited