OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 63, Iss. 4 — Apr. 1, 1973
  • pp: 450–462

Heterochromatic additivity, foveal spectral sensitivity, and a new color model

Sherman L. Guth and Howard R. Lodge  »View Author Affiliations

JOSA, Vol. 63, Issue 4, pp. 450-462 (1973)

View Full Text Article

Acrobat PDF (1493 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In three separate experiments it is shown that (i) heterochromatic additivity failures for foveally viewed trichromatic lights can be predicted using a vector model derived from bichromatic additivity data, (ii) near-threshold bichromatic additivity failures are not qualitatively different from threshold-level failures, and (iii) foveal spectral sensitivities obtained by direct brightness matching and threshold methods are greater in the long- and short-wavelength ends of the spectrum than sensitivities obtained by flicker photometry. A new opponent-colors model that is appropriate for threshold-level color vision is expressed as a transformation of the CIE standard observer. The model allows the derivation of a light unit that correlates with signal detectability and predicts (a) confusion lines for deuteranopic and tritanopic vision, (b) spectral sensitivity as measured by flicker photometry (i.e., a sensitivity function much like the CIE Vλfunction), (c) spectral sensitivity as measured by threshold (or direct-matching) techniques, (d) threshold-level heterochromatic additivity failures, (e) the apparent saturation of a threshold-level spectrum, (f) wavelength discrimination for a near-threshold spectrum, (g) loci of constant lightness-to-luminance ratios Within the CIE chromaticity diagram, and (h) the essential quantitative differences between threshold and near-threshold heterochromatic additivity failures.

Sherman L. Guth and Howard R. Lodge, "Heterochromatic additivity, foveal spectral sensitivity, and a new color model," J. Opt. Soc. Am. 63, 450-462 (1973)

Sort:  Author  |  Journal  |  Reset


  1. S. L. Guth, J. Opt. Soc. Am. 55, 718 (1965).
  2. S. L. Guth, Vision Res. 7, 319 (1967).
  3. S. L. Guth, J. V. Alexander, J. I. Chumbly, C. B. Gillman, and M. M. Patterson, Vision Res. 8, 913 (1968).
  4. S. L. Guth, N. J. Donley, and R. T. Marrocco, Vision Res. 9, 537 (1969).
  5. S. L. Guth, in Visual Science, edited by J. R. Pierce and J. R. Levene (Indiana U. P., Bloomington, 1971), p. 125.
  6. P. K. Kaiser, J. Opt. Soc. Am. 61, 966 (1971).
  7. W. W. Coblentz and W. B. Emerson, Natl. Bur. Std. (U. S.) Bull. 14, 167 (1917).
  8. A. Dresler, Trans. Illum. Eng. Soc. 18, 141 (1953).
  9. A. Kohlrausch, Licht 5, 259 (1935).
  10. H. G. Sperling, in N. P. L. Symposium No. 8: Visual Problems of Colour (H. M. Stationery Office, London, 1958), p. 251.
  11. H. G. Sperling and W. G. Lewis, J. Opt. Soc. Am. 50, 156 (1960).
  12. H. R. Lodge, Dissertation, Indiana University (1971).
  13. W. Richards and S. M. Luria, Vision Res. 4, 281 (1964).
  14. D. B. Judd, in Handbook of Experimental Psychology, edited by S. S. Stevens (Wiley, New York, 1951).
  15. P. L. Walraven, Dissertation, University of Utrecht (1962).
  16. G. Wyszecki, J. Opt. Soc. Am. 57, 254 (1967).
  17. H. Helson and W. C. Michels, J. Opt. Soc. Am. 38, 1025 (1948).
  18. G. Wyszecki and W. S. Stiles, Color Science. Concepts and Methods, Quantitative Data and Formulas (Wiley, New York, 1967), p. 405.
  19. I. Nimeroff, J. Opt. Soc. Am. 60, 966 (1970).
  20. D. B. Judd, in CIE Proceedings, Vol. I, Part 7 (Bureau Central CIE, 57 Rue Cuvier, Paris 5, 1951).
  21. R. A. Weale, J. Physiol. (Lond.) 113, 115 (1951).
  22. K. J. McCree, Opt. Acta 7, 317 (1960).
  23. R. M. Boynton and G. Wagner, in Color Metrics, edited by J. J. Vos, L. F. C. Friele, and P. L. Walraven (AIC/Holland, Soesterberg, 1972).
  24. S. Miller, J. Opt. Soc. Am. 60, 1404 (1970).
  25. S. L. Guth, in Color Metrics, edited by J. J. Vos, L. F. C. Friele, and P. L. Walraven (AIC/Holland, Soesterberg, 1972).
  26. For these reasons, the CIE X, Y, Z colorimetric system, which assumes Abney's law to be true, is logically valid. The use of Abney's law in deriving the distribution coefficients amounts to saying that the whiteness component on each side of a color match is identical—a statement which is, of course, true.
  27. It is possible that customary luminance values will also remain useful when responses involve temporal resolution (e.g., flicker photometry) or spatial resolution [e.g., border minimization (Refs. 6 and 28) or visual acuity (Ref. 29)].
  28. R. M. Boynton and P. K. Kaiser, Science 161, 366 (1968).
  29. B. V. Graham and S. L. Guth, J. Opt. Soc. Am. 60, 1573 (1970).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited