OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 64, Iss. 10 — Oct. 1, 1974
  • pp: 1313–1320

Ray model of energy and power flow in anisotropic film waveguides

V. Ramaswamy  »View Author Affiliations

JOSA, Vol. 64, Issue 10, pp. 1313-1320 (1974)

View Full Text Article

Acrobat PDF (773 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Monochromatic energy exchanges in thin-film dielectric waveguides can be understood in terms of a zig-zag ray picture that includes Goos-Haenchen shifts that occur at the film boundaries, as pointed out by Burke. Recently, Kogelnik and Weber have shown that, in order to predict the correct modal group velocity, the ray model should also include the time delay associated with the ray shifts at the film boundaries. In this paper, we explore in detail the ray-optical descriptions of anisotropic film waveguides that consist of three-layered biaxial materials with one of the principal axes of the crystal in each of the three media oriented in the direction of propagation and the other two parallel and perpendicular to the plane of the film. We show that the Burke-Kogelnik-Weber (BKW) ray model provides a complete description of energy flow in such anisotropic structures. Expressions for the ray shift, group velocity, power flow, and stored energy, applicable to both TE and TM modes, are presented.

V. Ramaswamy, "Ray model of energy and power flow in anisotropic film waveguides," J. Opt. Soc. Am. 64, 1313-1320 (1974)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. B. Airy, Philos. Mag. 2, 20 (1833).
  2. A. Sommerfeld, Optics, (Academic, New York, 1954), p. 47 ff.
  3. H. K. V. Lotsch, Optik 27, 239 (1968).
  4. P. K. Tien and R. Ulrich, J. Opt. Soc. Am. 60, 1325 (1970).
  5. J. J. Burke, J. Opt. Soc. Am. 61, 676 (1971); Opt. Sci. Newsletter (U. Arizona) 5, 66 (1971).
  6. N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, New York, 1972), p. 79.
  7. H. Kogelnik and V. Ramaswamy, Appl. Opt. 13, 1857 (1974).
  8. H. Kogelnik and H. P. Weber, J. Opt. Soc. Am. 64, 174 (1974).
  9. V. Ramaswamy, Appl. Phys. Lett. 21, 183 (1972).
  10. D. Hall, A. Yariv, and E. Garmire, Opt. Commun. 1, 403 (1970).
  11. I. P. Kaminow and J. R. Carruthers, Appl. Phys. Lett. 22, 326 (1973).
  12. J. M. Hammer and W. Phillips, Appl. Phys. Lett. 24, 545 (1974).
  13. P. K. Tien, R. J. Martin, S. L. Blank, S. H. Wemple, and L. J. Varnerin, Appl. Phys. Lett. 21, 207 (1972).
  14. S. Yamamoto, Y. Koyamada, and T. Makimoto, J. Appl. Phys. 43, 5090 (1972).
  15. D. P. GiaRusso and J. H. Harris, J. Opt. Soc. Am. 63, 138 (1973).
  16. V. Ramaswamy, Appl. Opt. 13, 1363 (1974).
  17. M. S. Kharusi, J. Opt. Soc. Am. 64, 27 (1974).
  18. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1958), p. 670, Eq. (41); p. 678, Eq. (6).
  19. Reference 18, p. 666, Eq. (9).
  20. H. L. Bertoni and A. Hessel, IEEE Trans. Antennas Propag. 14, 344 (1966).
  21. J. A. Arnaud and A. A. M. Saleh, Proc. IEEE Lett. 60, 639 (1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited