OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 64, Iss. 11 — Nov. 1, 1974
  • pp: 1498–1502

Degrees of freedom, and eigenfunctions, for the noisy image

M. Bendinelli, A. Consortini, L. Ronchi, and B. Roy Frieden  »View Author Affiliations

JOSA, Vol. 64, Issue 11, pp. 1498-1502 (1974)

View Full Text Article

Acrobat PDF (3013 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An eigenvalue analysis of the noise-prone image leads to (a) an analysis of the eigenfunctions and eigenvalues of the sin2(x)/x2 kernel; and (b) an expression relating an effective number Neff of degrees of freedom directly to the signal-to-noise ratio σ0v. The latter are the variances of object and noise, respectively. For the particular case of incoherent, diffraction-limited imagery, Neff is found to be reduced from its noise-free value, the Shannon number, by the factor (1-σv0). A maximum number Nmax of degrees of freedom is also defined. Comparing one-dimensional objects illuminated alternatively by coherent and incoherent light, we find they have the same number Nmax of degrees of freedom. However, for the corresponding two-dimensional case, the incoherent value for Nmax is double that of the coherent value.

M. Bendinelli, A. Consortini, L. Ronchi, and B. Roy Frieden, "Degrees of freedom, and eigenfunctions, for the noisy image," J. Opt. Soc. Am. 64, 1498-1502 (1974)

Sort:  Author  |  Journal  |  Reset


  1. G. Toraldo di Francia, J. Opt. Soc. Am. 45, 497 (1955).
  2. G. Toraldo di Francia, Trans. IRE AP-4, 473 (1956).
  3. C. K. Rushforth and R. W. Harris, J. Opt. Soc. Am. 58, 539 (1968).
  4. G. Toraldo di Francia, J. Opt. Soc. Am. 59, 799 (1969).
  5. B. R. Frieden, in Progress in Optics, IX, edited by E. Wolf, (North-Holland, Amsterdam, 1971), p. 311.
  6. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).
  7. F. Riesz and B. S. Nagy, Functional Analysis (Fredelich Angars, New York, 1965).
  8. A. Fedotowsky, thesis (Laval University, Canada) (1972).
  9. F. Gori and G. Guattari, Opt. Commun. 7, 163 (1973).
  10. H. J. Landau, Acta Math. 117, 37 (1967).
  11. R. L. Sanderson and W. Streifer, Appl. Opt. 8, 131 (1969).
  12. A. Consortini and F. Pasqualetti, Opt. Acta 20, 793 (1973).
  13. B. R. Frieden, J. Opt. Soc. Am. 62, 511 (1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited