OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 64, Iss. 2 — Feb. 1, 1974
  • pp: 128–133

Application of generalized ellipsometry to anisotropic crystals

R. M. A. Azzam and N. M. Bashara  »View Author Affiliations

JOSA, Vol. 64, Issue 2, pp. 128-133 (1974)

View Full Text Article

Acrobat PDF (649 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The technique of generalized ellipsometry is briefly reviewed. An improved criterion for computing the normalized 2 × 2 complex reflection matrix of an anisotropic surface from multiple-null ellipsometer measurements (in excess of three) is given. Generalized ellipsometry, together with the recently developed 4 × 4-matrix methods for the study of the reflection and transmission of polarized light by stratified anisotropic media, provide the basic tools to carry out and to interpret ellipsometric measurements on anisotropic structures. As an example, the case of uniaxial (absorbing) crystals, with the optic axis parallel to the surface, is considered. From three or more null measurements at a single unknown orientation of the optic axis, the five parameters (the ordinary and extraordinary complex indices of refraction and the angle of inclination of the optic axis from the plane of incidence) that characterize a uniaxial crystal of calcite are all determined.

R. M. A. Azzam and N. M. Bashara, "Application of generalized ellipsometry to anisotropic crystals," J. Opt. Soc. Am. 64, 128-133 (1974)

Sort:  Author  |  Journal  |  Reset


  1. Ellipsometry in the Measurement of Surfaces and Thin Films, edited by E. Passaglia, R. R. Stromberg, and J. Kruger, Natl. Bur. Stand. (U. S.) Misc. Publ. 256 (U. S. Government Printing Office, Washington, D. C., 1964).
  2. Proceedings of the Symposium on Recent Developments in Ellipsometry, edited by N. M. Bashara, A. B. Buckman, and A. C. Hall (North-Holland, Amsterdam, 1969).
  3. M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, New York, 1965), pp. 38 and 615.
  4. Reference 1, p. 9.
  5. Reference 3, p. 51.
  6. A. B. Winterbottom, Optical Studies of Metal Surfaces (F. Burns, Trondheim, 1955).
  7. R. A. W. Graves, J. Opt. Soc. Am. 59, 1225 (1969).
  8. A. Wünsche, Ann. Phys. (Leipz.) 25, 201 (1970).
  9. D. den Engelsen, J. Opt. Soc. Am. 61, 1460 (1971).
  10. D. den Engelsen, J. Phys. Chem. 76, 3390 (1972).
  11. F. Meyer, E. E. de Kluizenaar, and D. den Engelsen, J. Opt. Soc. Am. 63, 529 (1973).
  12. R. M. A. Azzam and N. M. Bashara, J. Opt. Soc. Am. 62, 336 (1972).
  13. R. M. A. Azzam and N. M. Bashara, Opt. Commun. 5, 5 (1972).
  14. R. M. A. Azzam and N. M. Bashara, J. Opt. Soc. Am. 62, 1375A (1972); J. Opt. Soc. Am. 62, 1521 (1972).
  15. S. Teitler and B. W. Henvis, J. Opt. Soc. Am. 60, 830 (1970).
  16. D. W. Berreman, J. Opt. Soc. Am. 62, 502 (1972).
  17. D. J. De Smet, J. Opt. Soc. Am. 63, 958 (1973).
  18. R. M. A. Azzam and N. M. Bashara, J. Opt. Soc. Am. 62, 222 (1972).
  19. R. M. A. Azzam and N. M. Bashara, J. Opt. Soc. Am. 63, 508A (1973); Appl. Phys. 2, 59 (1973).
  20. Many other possible applications of generalized ellipsometry are mentioned in Ref. 14.
  21. This method of obtaining and spacing multiple nulls is explained in Ref. 13. Other nulling schemes are detailed in Refs. 12 and 22.
  22. R. M. A. Azzam, T. L. Bundy, and N. M. Bashara, Opt. Commun. 7, 110 (1973).
  23. This assumes that the principal axes of both the absorption and the refraction indicatrices are coincident.
  24. T. P. Sosnowski, Opt. Commun. 4, 408 (1972).
  25. American Institute of Physics Handbook, 2nd ed. (McGraw-Hill, New York, 1963), Ch. 6, p. 18. These values were obtained by interpolating between values given in Table 6b-5a at wavelengths immediately above and below 6328 Å. If we use our values for N¯o, and N¯o [Eq. (15)], instead, the computed curves in Figs. 2 and 3 stay very much the same.
  26. Note that three ellipsometer null measurements made on a single surface of a uniaxial absorping crystal positioned in one orientation are just enough to determine all of the refractive properties of such a crystal, even when the optic axis makes arbitrary unknown angles θ and ω (less than 90°) with the surface and the plane of incidence, respectively. In this more-general case, we have six known quantities (the magnitude and angles, or the real and imaginary parts of Rpp/Rss, Rps/Rss, and Rsp/Rss) and six unknown parameters (no, ko; ne, ke; ω and θ). However, in this case, the reflection coefficients are no longer given by Eqs. (11)–(13). They may be derived using the methods of Refs. 15 and 16.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited