OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 64, Iss. 2 — Feb. 1, 1974
  • pp: 138–144

Space-variant image restoration by coordinate transformations

Alexander A. Sawchuk  »View Author Affiliations

JOSA, Vol. 64, Issue 2, pp. 138-144 (1974)

View Full Text Article

Acrobat PDF (1257 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method of image restoration for certain systems with space-variant point-spread functions is presented. The technique, called coordinate transformation restoration (CTR), is applicable to a large class of optical degradations, and operates by first transforming the degraded image by a geometrical distortion. Following this, space-invariant inverse filtering or estimation and another transformation are used to complete the process. The CTR technique makes restoration practical for a variety of incoherent systems with motion and aberration degradations by effectively reducing the system dimensionality.

Alexander A. Sawchuk, "Space-variant image restoration by coordinate transformations," J. Opt. Soc. Am. 64, 138-144 (1974)

Sort:  Author  |  Journal  |  Reset


  1. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), p. 18.
  2. A. W. Lohmann and D. P. Paris, J. Opt. Soc. Am. 55, 1007 (1965).
  3. A. A. Sawchuk, J. Opt. Soc. Am. 63, 1052 (1973).
  4. T. S. Huang, W. F. Schreiber, and O. J. Tretiak, Proc. IEEE 59, 1586 (1971); M. M. Sondhi, Proc. IEEE 60, 842 (1972).
  5. J. L. Harris, Sr., J. Opt. Soc. Am. 56, 569 (1966); J. L. Harris, Sr., in Evaluation of Motion Degraded Images, edited by M. Nagel, NASA Tech. Rep. No. SP-193 (U. S. Government Printing Office, Washington, D. C., 1968), p. 131; B. L. McGlamery, J. Opt. Soc. Am. 57, 293 (1967); J. Tsujiuchi, in Progress in Optics II, edited by E. Wolf (North-Holland, Amsterdam, 1963), p. 131; P. F. Mueller and G. O. Reynolds, J. Opt. Soc. Am. 57, 1338 (1967).
  6. C. W. Helstrom, J. Opt. Soc. Am. 57, 297 (1967); J. L. Horner, J. Opt. Soc. Am. 59, 553 (1969); J. L. Horner, Appl. Opt. 9, 167 (1970).
  7. D. Slepian, Bell Syst. Tech. J. 46, 2353 (1967); N. E. Nahi, Proc. IEEE 60, 872 (1972); A. Habibi, Proc. IEEE 60, 878 (1972).
  8. C. L. Rino, J. Opt. Soc. Am. 59, 547 (1969).
  9. A. V. Oppenheim, R. W. Schaefer, and T. G. Stockham, Jr., Proc. IEEE 56, 1264 (1968).
  10. B. R. Frieden, J. Opt. Soc. Am. 58, 1272 (1968).
  11. L. J. Cutrona, in Optical and Electro-Optical Information Processing, edited by J. T. Tippett, D. A. Berkowitz, L. C. Clapp, C. J. Koester, and A. Vanderburgh, Jr. (M.I.T. Press Cambridge, Mass., 1965), p. 86.
  12. T. G. Stockham, Jr., Proc. IEEE 60, 828 (1972).
  13. E. G. Johnston and A. Rosenfeld, in Picture Processing and Psychopictorics, edited by B. S. Lipkin and A. Rosenfeld (Academic, New York, 1970), p. 217.
  14. A. A. Sawchuk, Proc. IEEE 60, 854 (1972).
  15. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, London, 1970), p. 209.
  16. Reference 14, p. 211.
  17. G. M. Robbins, Mass. Inst. Tech. Res. Lab. Electronics Quart. Prog. Rept. 93, 243 (1969).
  18. G. M. Robbins and T. S. Huang, Proc. IEEE 60, 862 (1972).
  19. G. M. Robbins, Patt. Recog. 2, 91 (1970).
  20. R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965), p. 254; R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I (Wiley-Interscience, New York, 1966), p. 103; P. Baudelaire, Proc. IEEE 61, 467 (1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited