OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 64, Iss. 4 — Apr. 1, 1974
  • pp: 503–509

Solutions of a modified transport equation for multiple scattering in suspensions of highly anisotropic scatterers

Richard P. Hemenger  »View Author Affiliations


JOSA, Vol. 64, Issue 4, pp. 503-509 (1974)
http://dx.doi.org/10.1364/JOSA.64.000503


View Full Text Article

Acrobat PDF (679 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A modified form of the linear-transport equation is derived and applied to situations in which the scattering function is strongly peaked in the forward direction. This important case, which includes multiple scattering of light by biological suspensions, is very difficult to handle by use of ordinary linear-transport theory, but quite tractable with the modified equation. The modified equation is a very good approximation to the usual transport equation throughout the scattering medium except in the close vicinity of a δ function (i.e., a unidirectional) source. In the case of no absorption, the modified equation describes the statistics of stiff polymer chains.

Citation
Richard P. Hemenger, "Solutions of a modified transport equation for multiple scattering in suspensions of highly anisotropic scatterers," J. Opt. Soc. Am. 64, 503-509 (1974)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-64-4-503


Sort:  Author  |  Journal  |  Reset

References

  1. K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, Mass., 1967).
  2. K. M. Watson, J. Math. Phys. 10, 688 (1969).
  3. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), p. 4.
  4. S. Q. Duntley, J. Opt. Soc. Am. 53, 214 (1963).
  5. V. Twersky, J. Opt. Soc. Am. 60, 1084 (1970).
  6. C. C. Johnson, IEEE Trans. Bio-Med. Eng. 17, 129 (1970).
  7. K. M. Case, Ann. Phys. (N.Y.) 9, 1 (1960); Ref. 1.
  8. J. R. Mika, Nucl. Sci. Eng. 11, 415 (1961); Ref. 1, p. 87.
  9. S. Chandrasekhar, Radiative Transfer (Oxford, London, 1950); M. Wing, An Introduction to Transport Theory (Wiley, New York, 1962); J. O. Mingle, Nuc. Sci. Eng. 28, 177 (1967).
  10. P. Kubelka and F. Munk, Z. Tech. Phys. 12, 593 (1931); P. Kubelka, J. Opt. Soc. Am. 38, 448 (1948); J. Opt. Soc. Am. 44, 330 (1954); P. S. Mudgett and L. W. Richards, Appl. Opt. 10, 1485 (1971).
  11. Y. Y. Bobyrenko, Opt. Spektrosk. 24, 680 (1968) [Opt. Spectrosc. 24, 365 (1968)].
  12. Reference 1, p. 196.
  13. G. W. Kattawar and G. N. Plass, Appl. Opt. 11, 2851 (1972); Appl. Opt. 11, 2866 (1972).
  14. Ref. 4; V. Twersky, J. Math. Phys. 3, 724 (1962); J. Opt. Soc. Am. 52, 145 (1962).
  15. D. A. Cross and P. Latimer, Appl. Opt. 11, 1225 (1972).
  16. N. Saito, K. Takahashi, and Y. Yunoki, J. Phys. Soc. Jap. 22, 219 (1967); Y. Yamakawa, Modern Theory of Polymer Solutions (Harper and Row, New York, 1971).
  17. Reference 1, Ch. 5.
  18. Reference 1, Appendix F.
  19. Reference 1, p. 106.
  20. Reference 1, p. 105.
  21. N. J. McCormick and M. R. Mendelson, Nucl. Sci. Eng. 20, 462 (1964).
  22. y. Yener and M. W. Özisik, J. Math. Phys. 13, 2013 (1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited