OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 65, Iss. 1 — Jan. 1, 1975
  • pp: 59–64

Calculation of arbitrary-order diffraction efficiencies of thick gratings with arbitrary grating shape

S. F. Su and T. K. Gaylord  »View Author Affiliations

JOSA, Vol. 65, Issue 1, pp. 59-64 (1975)

View Full Text Article

Acrobat PDF (775 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method for calculating arbitrary-order diffraction efficiencies of thick, lossless transmission gratings with arbitrary periodic grating shapes has been developed. This represents an extension of previous work to nonsinusoidal gratings and to higher-order Bragg angles. A Fourier-series representation of the grating is employed, along with a coupled-mode theory of diffraction. For illustration, numerical values of the diffraction efficiencies at the first three Bragg angles are calculated for sinusoidal, square-wave, triangular, and saw-tooth gratings. Numerical results for the same grating shapes with the same parameters are also calculated for comparison, by extending Burckhardt’s numerical method for analyzing thick sinusoidal gratings. The comparison shows that the coupled-mode theory provides results with relative computational ease and results that are in agreement with calculations obtained by extending the more-rigorous Burckhardt theory to nonsinusoidal grating shapes and to higher-order Bragg angles.

S. F. Su and T. K. Gaylord, "Calculation of arbitrary-order diffraction efficiencies of thick gratings with arbitrary grating shape," J. Opt. Soc. Am. 65, 59-64 (1975)

Sort:  Author  |  Journal  |  Reset


  1. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  2. M. R. B. Forshaw, Opt. Laser Technol. 6, 28 (1974).
  3. B. H. Crawford, J. Sci. Instrum. 31, 333 (1954).
  4. J. N. Latta and R. C. Fairchild, J. Opt. Soc. Am. 63, 487 (1973).
  5. R. Shubert and J. H. Harris, J. Opt. Soc. Am. 61, 154 (1971).
  6. H. Kogelnik and C. V. Shank, Appl. Phys. Lett. 18, 152 (1971).
  7. I. P. Kaminow, H. P. Weber, and E. A. Chandross, Appl. Phys. Lett. 18, 497 (1971).
  8. H. Kogelnik and T. P. Sosnowski, Bell Syst. Tech. J. 49, 1602 (1970).
  9. M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
  10. J. M. Hammer, Appl. Phys. Lett. 18, 147 (1971).
  11. P. J. Van Heerden, Appl. Opt. 2, 393 (1963).
  12. K. S. Pennington and L. H. Lin, Appl. Phys. Lett. 7, 56 (1965).
  13. G. W. Stroke and A. E. Labeyrie, Phys. Lett. 20, 368 (1966).
  14. C. B. Burckhardt, J. Opt. Soc. Am. 56, 1502 (1966).
  15. P. Phariseau, Proc. Indian Acad. Sci. A 44, 165 (1956).
  16. C. F. Quate, C. D. W. Wilkinson, and D. K. Winslow, Proc. IEEE 53, 1604 (1965).
  17. R. S. Chu and T. Tamir, IEEE Tran. Micro. Thry. Tech. 18, 486 (1970).
  18. H. Kogelnik, J. Opt. Soc. Am. 57, 431 (1967).
  19. F. G. Kaspar, J. Opt. Soc. Am. 63, 37 (1973).
  20. T. Tamir and H. C. Wang, Can. J. Phys. 44, 2073 (1966).
  21. T. Tamir, Can. J. Phys. 44, 2461 (1966).
  22. D. A. Watkins, Topics in Electromagnetic Theory (Wiley, New York, 1958).
  23. M. G. Cohen and E. I. Gordon, Bell Syst. Tech. J. 45, 945 (1966).
  24. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1972), p. 71.
  25. W. W. Rigrod, J. Opt. Soc. Am. 64, 97 (1974); 64, 895E (1974).
  26. F. S. Chen, J. T. LaMacchia, and D. B. Fraser, Appl. Phys. Lett. 13, 223 (1968).
  27. J. J. Amodei, RCA Rev. 32, 185 (1971).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited