OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 65, Iss. 8 — Aug. 1, 1975
  • pp: 882–886

Theory of relativistic self-focusing of laser radiation in plasmas

Heinrich Hora  »View Author Affiliations


JOSA, Vol. 65, Issue 8, pp. 882-886 (1975)
http://dx.doi.org/10.1364/JOSA.65.000882


View Full Text Article

Acrobat PDF (492 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Propagation into a homogeneous plasma of a laser beam at irradiances higher than 1/500 of the relativistic threshold can result in self-focusing due to the highly sensitive relativistic dependence of the optical constants on laser irradiance. Electron densities slightly less than the relativistic-cutoff densities are required. Simultaneously with the self-focusing, it is also possible to achieve a dielectric increase (swelling) of laser energy density in the plasma that could reach 1/3 of its maximum value. In prepulsed plasmas, generated by Nd-glass-laser pulses of 3 × 1016 W/cm2, relativistic diffraction-limited self-focusing can generate relativistic electron-oscillation energies and hence pair production.

Citation
Heinrich Hora, "Theory of relativistic self-focusing of laser radiation in plasmas," J. Opt. Soc. Am. 65, 882-886 (1975)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-65-8-882


Sort:  Author  |  Journal  |  Reset

References

  1. A. G. Litvak, Zh. Eksp. Teor. Fiz. 57, 629 (1969) [Sov. Phys. JETP 30, 344 (1970)].
  2. M. S. Sodha, Repts. Prog. Phys. 37, 621 (1974).
  3. H. Hora, Z. Physik 226, 156 (1969); a derivation based on electron motion was given by Claire Ellen Max, J. Arons, and A. B. Langdon, Phys. Rev. Lett. 33, 209 (1974).
  4. The nonlinear force is the electrodynamic part of the gradient of the momentum-flux-density of a more general form than used by Landau and Lifshitz (Ref. 5). The generalization with respect to dispersion was confirmed by consistency with the derivation from other models, e.g., the two-fluid model (Ref. 6). Because Landau and Lifshitz (Ref. 5) used the expression "ponderomotive force" for gas dynamic (thermokinetic) and other forces, the expression "nonlinear force" for its electrodynamic part may be preferred with respect to its quadratic terms. Shearer and Eddleman (Ref. 7) specialized the general derivation to reproduce the electric term (without the magnetic term) of the nonlinear force, as used in microwave theory (Ref. 8), from which I needed further specializations to derive the general expression (Ref. 6).
  5. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1966), p. 242.
  6. H. Hora, Phys. Fluids 12, 182 (1969).
  7. J. W. Shearer and J. L. Eddleman, Phys. Fluids 16, 1522 (1973).
  8. H. Motz and C. J. H. Watson, in Advances in Electronics, Vol. 23, edited by L. Marton (Academic, New York, 1967), p. 153.
  9. A. Schlüter, Plasma Phys. 10, 471 (1968).
  10. H. Hora, D. Pfirsch, and A. Schlüter, Z. Naturforschung 22a, 278 (1967).
  11. F. F. Chen, in Laser Interaction and Related Plasma Phenomena, edited by H. Schwarz and H. Hora (Plenum, New York, 1974), Vol. 3A, p. 291.
  12. V. V. Korobkin and A. J. Alcock, Phys. Rev. Lett. 21, 1433 (1968).
  13. P. Kaw, Appl. Phys. Lett. 15, 16 (1969).
  14. A. J. Palmer, in Laser Interaction and Related Plasma Phenomena, edited by H. Schwarz and H. Hora (Plenum, New York, 1972), Vol. 2, p. 367.
  15. R. L. Dewar, Phys. Fluids 16, 431 (1973).
  16. M. S. Sodha, A. K. Chakravarti, W. P. Phadke, G. D. Gautama, and I. Rattan, Appl. Phys. Lett. 22, 121 (1972).
  17. T. W. B. Kibble, Phys. Rev. Lett. 16, 1054; Phys. Res. 150, 1060 (1966).
  18. A. Schlüter, Z. Naturforschung 5a, 72 (1950).
  19. R. Lüst, Z. Astrophysik 57, 67 (1953).
  20. H. Hora, Laser Plasmas and Nuclear Energy (Plenum, New York, 1975), p. 47.
  21. H. Hora, in Laser Interaction and Related Plasma Phenomena, edited by H. Schwarz and H. Hora (Plenum, New York, 1974) Vol. 3B, p. 803.
  22. L. Spitzer, Physics of Fully Ionized Gases (Wiley Interscience, New York, 1962).
  23. H. Hora, in Laser Interaction and Related Plasma Phenomena, edited by H. Schwarz and H. Hora (Plenum, New York, 1970), Vol. 1, p. 427.
  24. N. G. Basov and O. N. Krokhin, in Third International Quantum Electronic Conference, edited by N. Bloembergen (Academic, New Yorlk, 1963).
  25. T. W. Johnston and J. M. Dawson, Phys. Fluids 16, 722 (1973).
  26. J. M. Dawson and C. Oberman, Phys. Fluids 5, 517 (1962).
  27. H. Hora and H. Wilhelm, Nucl. Fusion 10, 111 (1970).
  28. F. Lindl and P. Kaw, Phys. Fluids 14, 371 (1972).
  29. R. B. White and F. F. Chen, Plasma Phys. 16, 587 (1974).
  30. H. Hora, Atomkernenergie 24, 187 (1974).
  31. H. Hora, Opto-Electronics 5, 491 (1973).
  32. J. L. Hughes, in Laser Interaction and Related Plasma Phenomnena, edited by H. Schwarz and H. Hora (Plenum, New York, 1974), Vol. 3B, p. 849.
  33. J. W. Shearer, J. Garrison, J. Wong, and J. E. Swain, in Laser Interaction and Related Plasma Phenomena, edited by H. Schwarz and H. Hora (Plenum, New York, 1974), Vol. 3B, p. 803.
  34. J. H. Nuckolls, in Laser Interaction and Related Plasma Phenomena, edited by H. Schwarz and H. Hora (Plenum, New York, 1974), Vol. 3B, p. 397.
  35. K. Brueckner, in Laser Interaction and Related Plasma Phenomena, edited by H. Schwarz and H. Hora (Plenum, New York, 1974), Vol. 3B, p. 427.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited