OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 66, Iss. 6 — Jun. 1, 1976
  • pp: 547–554

Dispersion relations and sum rules for magnetoreflectivity

David Y. Smith  »View Author Affiliations

JOSA, Vol. 66, Issue 6, pp. 547-554 (1976)

View Full Text Article

Acrobat PDF (890 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dispersion relations and sum rules for the dichroic reflectivity and phase shifts of circularly polarized modes are developed for the magneto-optical case. The reduction in crossing-relation symmetry arising from the presence of a magnetic field and the consequent non-Kramers-Kronig form of the dichroism dispersion relations are discussed in terms of the analyticity of the amplitude reflectivity. Sum rules are derived from the low- and high-frequency limits of the dichroism dispersion relations. These rules include the general results that ∫0 ω-1 ln[r+(ω)/r-(ω)]dω = 0 and ∫0[θ+(ω)-θ-(ω)]dω = πωc, where r±(ω) and θ±(ω) are the amplitude and phase of the amplitude reflectivity for the circular modes and ωc is the cyclotron frequency. Approximate finite-energy dispersion relations and sum rules are developed and their range of validity examined.

© 1976 Optical Society of America

David Y. Smith, "Dispersion relations and sum rules for magnetoreflectivity," J. Opt. Soc. Am. 66, 547-554 (1976)

Sort:  Author  |  Journal  |  Reset


  1. M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, Phys. Rev. B 6, 4502 (1972).
  2. A. Villani and A. H. Zimmerman, Phys. Lett. A 44, 295 (1973); and Phys. Rev. B 8, 3914 (1973).
  3. M. Altarelli and D. Y. Smith, Phys. Rev. B 9, 1290 (1974).
  4. F. C. Jahoda, thesis (Cornell University, 1957) (unpublished); and Phys, Rev. 107, 1261 (1957).
  5. B. Velický, Czech. J. Phys. B 11, 541 (1961).
  6. M. Gottlieb, Ph. D. thesis (University of Pennsylvania, 1959) (unpublished).
  7. See, J. S. Toll, thesis (Princeton University, 1952) (unpublished); and Phys. Rev. 104, 1760 (1956).
  8. H. M. Nussenzveig, Causality and Dispersion Relations (Academic, New York, 1972).
  9. I. M. Boswarva, R. E. Howard, and A. B. Lidiard, Proc. R. Soc. London Ser. A 269, 125 (1962).
  10. D. Y. Smith, Proceedings of the International Symposium on Color Centers in Alkali Halides, 1968, Rome (unpublished), p. 252; Bull. Am. Phys. Soc. 19, 93 (1974); and 19, 259 (1974).
  11. D. Y. Smith, J. Opt. Soc. Am. 66, 454 (1976).
  12. In this expression η must be restricted to nonzero values in the case of conductors. In these materials the dielectric function has an ω-1 singularity at ω = 0 which leads to an ω½ behavior in ln ˜γ(ω) near ω = 0. To ensure that V(ω) is square integrable, it is therefore necessary to require η ≠ 0 in Eq. (2) and in its analogue for circular modes. In insulators limω→0 lñγ(ω) is a nonzero constant and no such restriction applies.
  13. The restriction ω ≠ 0 in Eq. (12) also occurs for the derivation from the quotient function Q. It arises from having to avoid improper rearrangement under the integral sign when going from the integral from - ∞ to ∞ one from 0 to ∞.
  14. S. E. Schnatterly, Phys. Rev. 183, 664 (1969).
  15. D. Y. Smith, Phys. Rev. B 13, (1976) (to be published).
  16. F. Stern, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 1963), Vol. 15.
  17. A second low-frequency sum rule may be obtained from the expression for ln[γ¯+(ω)/γ¯(ω)], Eq. (12), if a specific model is assumed. For example, if an insulator consists of a single magnetically active Lorentzian absorption with plasma frequency ωp centered at ω0, the low-frequency limit of ln[γ¯+(ω)/γ¯_(ω)] is[Equation] where n0 is the static index (1 + ω2p20)½. Combining this with Eq. (12) yields [Equation]. For more complicated models of the absorption spectrum similar forms hold but with ω0, ωp, etc., replaced with average values.
  18. H. Becquerel, C. R. Acad. Sci. (Paris) 125, 679 (1897).
  19. C. G. Darwin and W. H. Watson, Proc. R. Soc. London 114, 474 (1927).
  20. The dielectric function for this system is ∊±(ω) = ∊b - ω2p / (ω2 - ω20 ± ωωc + iωγ), with the background dielectric function ∊b equal unity for vacuum.
  21. See, for example, R. K. Ahrenkiel, T. H. Lee, S. L. Lyu, and F. Moser, Solid State Commun. 12, 1113 (1973).
  22. An alternative approximation is to employ the inverse-second-moment phase sum rule discussed in Ref. 17 rather than the zeroth moment phase sum rule to evaluating the left-hand side of Eq. (31). This leads to a result similar to Eq. (32), but with ω¯2 replaced n0 ω¯20, where n0 is the contribution to the static index from transitions at energies ω >β.
  23. As in the vacuum background case a second sum rule derived from the low-frequency limit holds for insulators, but its form depends on the model assumed. For the single Lorentzian absorption treated in Ref. 17 the low-frequency limit of the quotent yields [Equation] where now ń0 = (ε + ω2p20)½. This leads to [Equation].

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited