Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Theory of spatial-frequency filtering by the human visual system. I. Performance limited by quantum noise

Not Accessible

Your library or personal account may give you access

Abstract

A theory and model of the visual system are presented to explain the detection of static sinusoidal gratings near the threshold. The model incorporates a set of independent decision centers and associated photoreceptive fields (PRFs). The decision criterion value at each decision center is proportional to the standard deviation of the excitation current transmitted from a PRF to its associated decision center caused by quantum fluctuations in the absorption of light. It is well known that the spatial-frequency-response (SFR) function and the spatial-impulse-response (SIR) function of a photodetector are a Fourier transform pair. A systematic examination of the SIR and SFR functions of PRF configurations consisting of rectangular regions of alternately excitatory and inhibitory response reveals that modulation sensitivity of the visual system is explained at scotopic and photopic illuminance by a set of PRFs composed of a single excitatory region and a central excitatory region bordered by inhibitory regions, respectively. The complete model is shown to yield a high degree of conformity between theoretical and experimental threshold modulation curves.

© 1976 Optical Society of America

Full Article  |  PDF Article
More Like This
Monkey contrast threshold for aperiodic patterns*

Thomas H. Harding and J. Terry Yates
J. Opt. Soc. Am. 66(2) 131-138 (1976)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved