OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 66, Iss. 8 — Aug. 1, 1976
  • pp: 761–768

Resolving power in holographic Fourier-transform spectroscopy and the effects of nonlinear film response

Hon-ming Lai and Shih-yu Feng  »View Author Affiliations

JOSA, Vol. 66, Issue 8, pp. 761-768 (1976)

View Full Text Article

Acrobat PDF (931 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A general formulation is given, including the nonlinearity of a film’s t-E curve, on the intensity distribution of the reconstructed spectrum in holographic Fourier-transform spectroscopy, and a discussion on resolution follows. It is shown that Rayleigh’s criterion never applies except for a doublet under a special situation. The amplitude cancellation mechanism, which is responsible for a recently reported very good resolution, is not of much advantage when the spectrum is not a simple doublet. A third-order approximation is used to study the nonlinear effect, and a doublet case is analyzed in detail for positions and intensities of the higher-order lines.

© 1976 Optical Society of America

Hon-ming Lai and Shih-yu Feng, "Resolving power in holographic Fourier-transform spectroscopy and the effects of nonlinear film response," J. Opt. Soc. Am. 66, 761-768 (1976)

Sort:  Author  |  Journal  |  Reset


  1. G. W. Stroke and A. T. Funkhouser, Phys. Lett. 16, 272 (1965).
  2. G. W. Stroke, Physica (Utr.) 33, 253 (1967).
  3. K. Yoshihara and A. Kitade, Jpn. J. Appl. Phys. 6, 116 (1967).
  4. K. Kamiya, K. Yoshihara, and K. Okada, Jpn. J. Appl. Phys. 7, 1129 (1968).
  5. W. T. Plummer, Jpn. J. Appl. Phys. 6, 1250 (1967).
  6. H. Abbott, F. T. Johnson, R. Licata, and P. Oliver, Am. J. Phys. 39, 412 (1971).
  7. P. F. Parshin and A. A. Chumachenko, Usp. Fiz. Nauk. 103, 553 (1971) [Sov. Phys.-Usp. 14, 219 (1971)].
  8. L. K. Su, S. T. Hsue, and S. Y. Feng, Phys. Lett. A 53, 177 (1975).
  9. G. W. Stroke, An Introduction to Coherent Optics and Holography (Academic, New York 1969), 2nd ed., p. 157.
  10. H. M. Lai and S. Y. Feng, Phys. Lett. A 54, 88 (1975).
  11. A simpler case of Fraunhofer diffraction pattern due to one sinusoidal grating can be found in J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 65–68.
  12. J. W. Goodman, in Ref. 11, p. 130–131.
  13. A. Kozma, Introduction to Optical Data Processing (McGraw-Hill, New York, 1967), Vol. 1, Chap. 9.
  14. J. W. Goodman and G. R. Knight, J. Opt. Soc. Am. 58, 1276 (1968).
  15. O. Bzyngdahl and A. Lohmann, J. Opt. Soc. Am. 58, 1325 (1968).
  16. R. J. Collier, B. Burckhardt and L. H. Lin, Optical Holography (Academic, New York, 1971), p. 338, Eq. (12. 1).
  17. R. J. Collier, in Ref. 16, p. 341–343.
  18. A. Kozma, J. Opt. Soc. Am. 56, 428 (1966).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited