Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Restoring with maximum entropy. III. Poisson sources and backgrounds

Not Accessible

Your library or personal account may give you access

Abstract

The maximum entropy (ME) restoring formalism has previously been derived under the assumptions of (i) zero background and (ii) additive noise in the image. However, the noise in the signals from many modern image detectors is actually Poisson, i.e., dominated by single-photon statistics. Hence, the noise is no longer additive. Particularly in astronomy, it is often accurate to model the image as being composed of two fundamental Poisson features: (i) a component due to a smoothly varying background image, such as caused by interstellar dust, plus (ii) a superimposed component due to an unknown array of point and line sources (stars, galactic arms, etc.). The latter is termed the “foreground image” since it contains the principal object information sought by the viewer. We include in the background all physical backgrounds, such as the night sky, as well as the mathematical background formed by lower-frequency components of the principal image structure. The role played by the background, which may be separately and easily estimated since it is smooth, is to pointwise modify the known noise statistics in the foreground image according to how strong the background is. Given the estimated background, a maximum-likelihood restoring formula was derived for the foreground image. We applied this approach to some one-dimensional simulations and to some real astronomical imagery. Results are consistent with the maximum-likelihood and Poisson hypotheses: i.e., where the background is high and consequently contributes much noise to the observed image, a restored star is broader and smoother than where the background is low. This nonisoplanatic behavior is desirable since it permits extra resolution only where the noise is sufficiently low to reliably permit it.

© 1978 Optical Society of America

Full Article  |  PDF Article
More Like This
Restoring with Maximum Likelihood and Maximum Entropy*

B. Roy Frieden
J. Opt. Soc. Am. 62(4) 511-518 (1972)

Maximum-entropy image restoration: Lagrange and recursive techniques

Edward S. Meinel
J. Opt. Soc. Am. A 5(1) 25-29 (1988)

Maximum entropy image restoration. I. The entropy expression

Ryoichi Kikuchi and B. H. Soffer
J. Opt. Soc. Am. 67(12) 1656-1665 (1977)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved