OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 69, Iss. 1 — Jan. 1, 1979
  • pp: 181–187

Analysis of adaptive optical elements made from piezolectric bimorphs

S. A. Kokorowski  »View Author Affiliations


JOSA, Vol. 69, Issue 1, pp. 181-187 (1979)
http://dx.doi.org/10.1364/JOSA.69.000181


View Full Text Article

Acrobat PDF (869 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The deformation properties of an adaptive optical element made from a piezoelectric bimorph plate are analyzed. The fundamental relationship between the deformation of the optical surface and the voltage distribution applied across the thickness of the plate is derived and the general solution for an infinite plate is presented. A particular solution for a finite rectangular plate is also presented.

© 1979 Optical Society of America

Citation
S. A. Kokorowski, "Analysis of adaptive optical elements made from piezolectric bimorphs," J. Opt. Soc. Am. 69, 181-187 (1979)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-69-1-181


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Opt. Soc. Am. 67, 269–422 (1977).
  2. J. E. Pearson, W. B. Bridges, S. Hansen, T. A. Nussmeir, and M. E. Pedinoff, "Coherent Optical Adaptive Techniques: Design and Performance of an 18-element Visible Multidither COAT System," Appl. Opt. 15, 611 (1976).
  3. J. E. Pearson, S. Hansen, "Experimental studies of a deformable-mirror adaptive optical system," J. Opt. Soc. Am. 67, 325 (1977).
  4. J. Feinleib, S. G. Lipson, and P. F. Cone, "Monolithic Piezoelectric Mirror for Wavefront Correction," Appl. Phys. Lett. 25, 311 (1974).
  5. Richard Hudgin, "Wave-front compensation error due to finite corrector-element size," J. Opt. Soc. Am. 67, 393 (1977).
  6. E. Bin-Nun, F. Dothan-Deutsch, "Mirror with Adjustable Radius of Curvature," Rev. Sci. Instrum. 44, 512 (1973).
  7. S. Mikoshiba, B. Ahlborn, "Laser Mirror with Variable Focal Length," Rev. of Sci. Instrum. 44, 508 (1973).
  8. N. T. Adelman, "Spherical Mirror with Piezoelectrically Controlled Curvature," Appl. Opt. 16, 3075 (1977).
  9. Ronald P. Grosso and Martin Yellin, "The membrane mirror as an adaptive optical element," J. Opt. Soc. Am. 67, 399 (1977).
  10. V. Wang and T. R. O'Meara, personal communication.
  11. Physical Acoustics Vol. I, Part A, edited by W. P. Mason, (Academic, New York, 1964).
  12. B. A. Auld, Acoustic Fields and Waves in Solids, (Wiley, New York, 1973).
  13. W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics, (Van Nostrand, Princeton, 1950).
  14. Most present manufacturing techniques employ uniaxial stretching prior to poling PVF2 in order to enhance the piezoelectric properties. This produces a biased piezoelectric response in the stretched direction (i.e., h3lh32) as well as possible mechanical inhomogeneity in the x,y plane. Biaxial or perhaps even radial stretching would be necessary to achieve the assumed properties, (i) and (iii). Both of these techniques are technically feasible, but there has not been a need to produce such a material for the present applications involving PVF2. Another possibility would be not to stretch the material at all, but this would probably reduce the magnitude of the piezoelectric constants.
  15. J. H. Shames, Mechanics of Deformable Solids, (Prentice Hall, Englewood Cliffs, N.J., 1964).
  16. L. D. Landau and E. M. Litshitz, Theory of Elasticity, (Addison-Wesley, Reading, Mass. 1959).
  17. G. Arfken, Mathematical Methods for Physicists, (Academic, New York, 1971).
  18. H. Ohigashi, R. Shigenari, and M. Yokota, "Light Modulation by Ultrasonic Waves from Piezoelectric Polyvinylidene Fluoride Films," Jpn. J. Appl. Phys., 14, No. 7 (1975).
  19. P. M. Morse, H. Feshback, Methods of Theoretical Physics, (McGraw-Hill, New York, 1953).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited