OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 70, Iss. 12 — Dec. 1, 1980
  • pp: 1483–1495

Inverse scattering method in electromagnetic optics: Application to diffraction gratings

A. Roger and D. Maystre  »View Author Affiliations

JOSA, Vol. 70, Issue 12, pp. 1483-1495 (1980)

View Full Text Article

Acrobat PDF (1335 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theoretical and numerical method for solving problems of inverse scattering in optics: given data on the far field, find the scattering object. This method is applied to perfectly conducting diffraction gratings. From the efficiency curve in a Littrow mounting and in the TE case, we derive the shape of the grating surface. Two different cases must be distinguished. The first problem, which we call "reconstruction," is to compute the profile when the efficiency is experimentally known. In the second one, called "synthesis," we give <i>a priori</i> an efficiency curve and look for the corresponding grating(s), if it actually exists. We show several theoretical reconstructions for various gratings, and present our first results in the very difficult field of synthesis. The relevance of this method in the domain of electromagnetic optics is then outlined by its application to two other problems.

© 1980 Optical Society of America

A. Roger and D. Maystre, "Inverse scattering method in electromagnetic optics: Application to diffraction gratings," J. Opt. Soc. Am. 70, 1483-1495 (1980)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. Inverse Source Problems in Optics, edited by H. P. Baltes (Springer-Verlag, Heidelberg, 1978).
  2. I. J. Wilson, Ph.D. Thesis, University of Tasmania, Hobart, 1977 (unpublished).
  3. A. Roger and D. Maystre, "The perfectly conducting grating from the point of view of inverse diffraction," Opt. Acta 26, 447–460 (1979).
  4. In this grating formula, the incidence angle θ and the diffracted angles θn are defined using, respectively, the counterclockwise sense and the clockwise sense from 0y axis.
  5. R. Petit, "Electromagnetic grating theories: limitations and successes," Nouv. Rev. Opt. 6, 129–135 (1975).
  6. D. Maystre, "A new general integral theory for dielectric coated gratings," J. Opt. Soc. Am. 68, 490–495 (1978).
  7. D. Maystre, "Sur la diffraction d’une onde plane électromagnetique par un réseau métallique," Opt. Commun. 8, 216–219 (1973).
  8. R. Petit and D. Maystre, "Application des lois de l'électromagnétisme à l'étude des réseaux," Rev. Phys. Ap. 7, 427–441 (1972).
  9. D. Maystre, "Sur la diffraction et l'absorption par les réseaux utilisés dans l'infrarouge, le visible et l'ultraviolet," Thesis, Université Aix-Marseille III, CNRS A.O. 9545, 1974 (unpublished).
  10. Electromagnetic Theory of Gratings, edited by R. Petit (Springer-Verlag, Heidelberg, 1980).
  11. C. Miranda, Partial Differential Equations of Elliptic Type (Springer-Verlag, Heidelberg, 1970).
  12. J. C. Guillot and C. H. Wilcox, "Théorie spectrale du laplacien dans des ouverts coniques et cylindriques non bornés," C.R. Acad. Sci. Paris A 282, 1171–1174 (1976).
  13. L. Schwarz, Théorie des Distributions (Hermann, Paris, 1966).
  14. P. M. Van den Berg, "Diffraction theory of a reflection grating," Appl. Sci. Res. 24, 261–293 (1971), App. A.
  15. L. Y. Kantorovitch, "On Newton's method for functional equations," DAN SSSR 59 (7), 1237–1240 (1948).
  16. Dunford-Schwartz, Linear Operators (Wiley-Interscience, New York, 1966), Chap. II, p. 92.
  17. E. Hille and J. D. Tamarkin, "On the characteristic values of linear integral equations," Ata Math. 57, 1–75 (1931).
  18. A. Roger, D. Maystre, and M. Cadilhac, "On a problem of inverse scattering in Optics: the dielectric inhomogeneous medium," J.Opt. 9 (2), 83–90 (1978).
  19. M. Bertero, C. de Molb and G. A. Viano, "Restoration of optical objects using regularization," Opt. Lett. 3, 51–53 (1978).
  20. D. Maystre and P. Vincent, "Diffraction d'une onde électromagnétique plane par un objet cylindrique non infiniment conducteur de section arbitraire," Opt. Commun. 5, 327–330 (1972).
  21. A. Roger and D. Maystre, "Determination of the index profile of a dielectric plate by optical methods," SPIE 136, 26–28 (1977).
  22. A. Roger, "Determination of the index profile of a dielectric plate from scattering data," Lecture notes in Physics n° 85, Applied Inverse Problems (Springer-Verlag, Heidelberg, 1978).
  23. D. Maystre and M. Cadilhac, "A phenomenological theory for gratings, perfect blazing for polarized light in non-zero deviation mounting," Proceedings of the U.R.S.I. Symposium, Munich, 1980 (unpublished).
  24. A. Roger, "Grating profile optimizations by inverse scattering methods," Opt. Commun. 32, 11–13 (1980).
  25. M. Reed and B. Simon, Methods of Modern Mathematical Physics (Academic, New York, 1972).
  26. A. Tikhonov and V. Arsénine, Méthodes de Résolution de Problémes Mal Posés (Editions de Moscou, Moscow, 1976).
  27. K. Miller, "Least squares method for ill posed problems with a prescribed bound," Siam J. Math. Anal. 1, 52–74 (1970).
  28. R. Petit, "Quelques propriétés des réseaux métalliques," Opt. Acta 14, 301–310 (1967).
  29. M. Breidne and D. Maystre, "Equivalence of ruled, holographic and lamellar gratings in constant deviation mountings," Appl. Opt. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited