Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Polynomial filters of any degree

Not Accessible

Your library or personal account may give you access

Abstract

The general analytic expression for the polynomial smoothing function of any degree for equally spaced data points is presented. In addition to the explicit formula, a simple recursion relation is also given. The determination of numerical coefficients in the convolution equation involves only integer arithmetic. These results are further used to describe in some detail the effectiveness of digital polynomial smoothing, or filtering, of sampled spectral data in their dependence on the degree K of the polynomial, the number S of smoothing passes, and the range T of points in the smoothing interval. Then it can be shown that the sharpness of the frequency cutoff increases with the degree of the polynomial, the high-frequency attenuation increases with the number of smooths, and the cutoff of the filter moves toward lower frequencies as the range of points in the smoothing interval increases. The values of these three parameters should not be chosen entirely independently of one another, but the first two should be selected before the third.

© 1981 Optical Society of America

Full Article  |  PDF Article
More Like This
Zernike annular polynomials for imaging systems with annular pupils

Virendra N. Mahajan
J. Opt. Soc. Am. 71(1) 75-85 (1981)

Least-Squares Polynomial Filtering of Images by Convolution

Peter A. Jansson
J. Opt. Soc. Am. 62(2) 195-198 (1972)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.