OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 72, Iss. 10 — Oct. 1, 1982
  • pp: 1382–1384

Simple derivation of formulas for Fraunhofer diffraction at polygonal apertures

Jiří Komrska  »View Author Affiliations


JOSA, Vol. 72, Issue 10, pp. 1382-1384 (1982)
http://dx.doi.org/10.1364/JOSA.72.001382


View Full Text Article

Acrobat PDF (357 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Abbe transform is used to derive rigorous algebraic formulas for the wave function describing Fraunhofer diffraction at apertures in the form of arbitrary polygons. Two remarks bring the Abbe transform and the Abbe theorem into the context of the history of diffraction.

© 1982 Optical Society of America

Citation
Jiří Komrska, "Simple derivation of formulas for Fraunhofer diffraction at polygonal apertures," J. Opt. Soc. Am. 72, 1382-1384 (1982)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-72-10-1382


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. Sillitto, "Fraunhofer diffraction at straight-edged apertures," J. Opt. Soc. Am. 69, 765–770 (1979).
  2. R. M. Sillitto and W. Sillitto, "A simple Fourier approach to Fraunhofer diffraction by triangular apertures," Opt. Acta 22, 999–1010 (1975).
  3. I. E. Golberg, B. E. Kinber, and V. B. Tzeitlin, "Diffraction by the bodies with broken edges," Radiotech. Elektron. 20, 1582–1591 (1975).
  4. J. Komrska, "Fraunhofer diffraction at apertures in the form of regular polygons. I," Opt. Acta 19, 807–816 (1972).
  5. J. Komrska, "Fraunhofer diffraction at apertures in the form of regular polygons. II," Opt. Acta 20, 549–563 (1973).
  6. R. C. Smith and J. S. March, "Diffraction patterns of simple apertures," J. Opt. Soc. Am. 64, 798–803 (1974).
  7. W. Witz, "Fraunhofer diffraction pattern of an aperture," J. Opt. Soc. Am. 65, 1077–1078 (1975).
  8. E. Abbe, Gesammelte Abhandlungen (Verlag Gustav Fischer, Jena, Germany, 1904), Vols. 1–3.
  9. R. Straubel, Über die Berechnung der Fraunhoferschen Beugungserscheinungen durch Randintegrale mit besonderer Berück-Sichtigung der Theorie der Beugung in Heliometer (Frommansche Buchdruckerei, Jena, Germany, 1888).
  10. M. v. Laue, "Bemerkung über Fraunhofersche Beugung," Sitzungsber. Preuss. Akad. Wiss. Phys. Math. KI. 89–91 (1936).
  11. M. v. Laue, "Die äussere Form der Kristalle in ihrem Einfluss auf die Interferenzerscheinungen an Raumgittern," Ann. Phys. (Leipzig) 26, 55–68 (1936).
  12. R. W. James, The Optical Principles of the Diffraction of X-Rays (Bell, London, 1967), pp. 548–555.
  13. A. Rubinowicz, "Die Rolle der Beugungswelle in der Fraunhoferschen Beugungserscheinungen," Acta Phys. Pol. 13, 3–13 (1954).
  14. A. Rubinowicz, Die Beugungswelle in der Kirchhoffschen Theorie der Beugung, 2nd ed. (Springer-Verlag, Berlin, 1966), pp. 214–225.
  15. R. Straubel, "Zwei allgemeine Sätze über Fraunhofersche Beugungserscheinungen," Ann. Phys. Chemie, Neue Folge 56, 746–761 (1895); cf. pp. 757–758.
  16. J. Komrska, "Abbe transform and Abbe theorem in the theory of Fraunhofer diffraction," Cesk. Cas. Fys. (A) 27, 579–586 (1977).
  17. F. M. Schwerd, Die Beugungserscheinungen aus den Fundamehtalgesetzen der,Undulationstheorie analytisch entwickelt und in Bildern dargestellt (Schwan und Goetz'sche Hofbuchhandlung, Mannheim, Germany, 1835), Sec. 182, p. 117.
  18. Ref. 2, Fig. 4(a).
  19. J. Larmor, "The stellate appendages of telescopic and entoptic diffraction," Proc. Cambridge Philos. Soc. 21, 410–413 (1923).
  20. A. Sommerfeld, Optics (Academic, New York, 1954), pp. 233–237.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited