OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 72, Iss. 4 — Apr. 1, 1982
  • pp: 456–459

Glory in backscattering: Mie and model predictions for bubbles and conditions on refractive index in drops

Philip L. Marston and Dean S. Langley  »View Author Affiliations


JOSA, Vol. 72, Issue 4, pp. 456-459 (1982)
http://dx.doi.org/10.1364/JOSA.72.000456


View Full Text Article

Acrobat PDF (507 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mie calculations illustrate the dependences of scattered intensity on polarization, angle, and size for bubbles with radii ≃0.3 mm in a siloxane liquid. Computations give evidence of the axial focusing observed in recent experiments and predicted by a model. Conditions for glory rays in drops and bubbles are derived, and errors in the literature are noted.

© 1982 Optical Society of America

Citation
Philip L. Marston and Dean S. Langley, "Glory in backscattering: Mie and model predictions for bubbles and conditions on refractive index in drops," J. Opt. Soc. Am. 72, 456-459 (1982)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-72-4-456


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. C. van de Hulst, "A theory of the anti-coronae," J. Opt. Soc. Am. 37, 16–22 (1947).
  2. H. M. Nussenzveig, "Complex angular momentum theory of the rainbow and the glory," J. Opt. Soc. Am. 69, 1068–1079 (1979); V. Khare and H. M. Nussenzveig, "The theory of the glory," in Statistical Mechanics and Statistical Methods in Theory and Application, U. Landman, ed. (Plenum, New York, 1977), pp. 723–764.
  3. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  4. H. M. Nussenzveig and W. J. Wiscombe, "Forward optical glory," Opt. Lett. 5, 1279–1282 (1980).
  5. P. L. Marston and D. S. Langley, "Glory and depolarization in backscattering from air bubbles," J. Opt. Soc. Am. 70, 1607 (1980).
  6. D. S. Langley and P. L. Marston, "Glory in optical backscattering from air bubbles," Phys. Rev. Lett. 47, 913–916 (1981).
  7. G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. Phys. (Leipzig) 25, 377–445 (1908).
  8. P. L. Marston, D. S. Langley, and D. L. Kingsbury, "Light scattering by bubbles in liquids: Mie theory, physical-optics approximations, and experiments," in Proceedings of the 1981 IUTAM Symposium on the Mechanics and Physics of Bubbles in Fluids, L. van Wijngaarden, ed., Appl. Sci. Res. 38, 373–383 (1982).
  9. G. E. Davis, "Scattering of light by an air bubble in water," J. Opt. Soc. Am. 45, 572–581 (1955).
  10. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969), p. 145.
  11. G. P. Können and J. H. deBoer, "Polarized rainbow," Appl. Opt. 18, 1961–1965 (1979).
  12. D. L. Kingsbury and P. L. Marston, "Mie scattering near the critical angle of bubbles in water," J. Opt. Soc. Am. 71, 358–361 (1981).
  13. D. E. Barrick, "Spheres," in Radar Cross Section Handbook, G. T. Ruck, ed. (Plenum, New York, 1970), Vol. 1, Chap. 3.
  14. W. J. Wiscombe, "Improved Mie scattering algorithms," Appl. Opt. 19, 1505–1509 (1980).
  15. J. J. Stephens, P. S. Ray, and T. W. Kitterman, "Far-field impulse response verification of selected high-frequency optics backscattering analogs," Appl. Opt. 14, 2169–2176 (1975).
  16. H. C. Bryant and A. J. Cox, "Mie theory and the glory," J. Opt. Soc. Am. 56, 1529–1532 (1966).
  17. R. G. Kouyoumjian, L. Peters, Jr., and D. T. Thomas, "A modified geometrical optics method for scattering by dielectric bodies," IEEE Trans. Antennas Propag. AP-11, 690–703 (1963).
  18. S. M. Chernov, K. K. Zhilik, A. N. Lukomskii, and P. P. Lamekin, "Determination of the refractive index of homogeneous cylindrical fibers," Opt. Spectrosc. (USSR) 48, 541–543 (1980).
  19. Numerical and algebraic tests indicate that Barrick's footnote (p.168 of Ref. 13) is incorrect. It states that there are two values of θ˜ for p = 3 when ⅔ < m < 2¼.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited