OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 73, Iss. 12 — Dec. 1, 1983
  • pp: 1684–1690

Spatial-frequency discrimination and detection: comparison of postadaptation thresholds

D. Regan and K. I. Beverley  »View Author Affiliations


JOSA, Vol. 73, Issue 12, pp. 1684-1690 (1983)
http://dx.doi.org/10.1364/JOSA.73.001684


View Full Text Article

Acrobat PDF (983 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We found that inspecting a sine-wave grating elevated threshold for spatial-frequency discrimination as it does for contrast detection, but discrimination threshold was maximally elevated at about twice the adapting frequency, where detection threshold was little affected; and detection threshold was maximally elevated at the adapting frequency, where discrimination threshold was not elevated at all. Orientation tuning was roughly similar for contrast and for discrimination threshold elevations; elevations fell by half at between 7 and 17 deg from the adapting orientation. We compared our findings with the predictions of three models of discrimination: (1) The data are inconsistent with the idea that the most strongly stimulated channels are the most important channels for discrimination. (2) With an additional assumption, the Hirsch—Hylton scaled-lattice model could account for our finding that discrimination threshold elevations are asymmetric. (3) With no additional assumptions, the idea that discriminati n is determined by the relative activities of multiple overlapping spatial-frequency channels or sizetuned neurons can account for our finding that discrimination thresholds are asymmetric. We propose a physiologically based discrimination model: Asymmetrically tuned cortical cells feed a ratio-tuned neural mechanism whose properties are formally analogous to those of ratio-tuned neurons that have recently been found in cat visual cortex. The linear relation between firing frequency and contrast can explain why discrimination threshold is substantially independent of contrast.

© 1983 Optical Society of America

Citation
D. Regan and K. I. Beverley, "Spatial-frequency discrimination and detection: comparison of postadaptation thresholds," J. Opt. Soc. Am. 73, 1684-1690 (1983)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-73-12-1684

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited