OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 261–267

Dielectric multilayers with absorption at layer boundaries

Yuri V. Troitski  »View Author Affiliations

JOSA A, Vol. 15, Issue 1, pp. 261-267 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The concept of a conducting surface is applied to the description of dielectric multilayers with very thin absorbing films at layer boundaries. Recursive formulas are derived for calculation of multilayer parameters on the basis of the admittance method with arbitrary incidence angles. An expression is found for the characteristic matrix of a conducting surface. Quarter-wavelength dielectric mirrors with boundary losses are investigated, and some simple analytical expressions are found. The possibility of use of the proposed method in the case of boundaries that scatter the light is discussed. Surface radiation conductance is introduced as a characteristic of integral light scattering at a boundary.

© 1998 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(240.0310) Optics at surfaces : Thin films

Yuri V. Troitski, "Dielectric multilayers with absorption at layer boundaries," J. Opt. Soc. Am. A 15, 261-267 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. A. Temple, “Measurement of thin-film optical absorption at air–film interface, within the film and at the film-substrate interface,” Appl. Phys. Lett. 34, 677–679 (1979). [CrossRef]
  2. F. Coriand, H.-G. Walther, E. Welsch, D. Schafer, and R. Wolf, “Measurement of the thickness dependence of absorption in HfO2 and ZnS single-layer films,” Thin Solid Films 130, 29–35 (1985). [CrossRef]
  3. T. Yamaguchi, H. Tamura, S. Taga, and S. Tsuchiya, “Interfacial optical absorption in TiO2-SiO2 multilayer coatings prepared by RF magnetron sputtering,” Appl. Opt. 25, 2703–2706 (1986). [CrossRef]
  4. E. N. Kotlikov, “Investigation of absorption in mirrors and films,” Opt. Spektrosk. 70, 838–841 (1991).
  5. K. H. Guenther, “Recent progress in optical coating technology: low voltage ion plating deposition,” in Optical Thin Films and Applications, R. Herrmann, ed., Proc. SPIE 1270, 211–221 (1990). [CrossRef]
  6. K. H. Guenther, H. L. Gruber, and H. K. Pulker, “Morphology and light scattering of dielectric multilayer systems,” Thin Solid Films 34, 363–367 (1967). [CrossRef]
  7. O. Arnon, “Loss mechanisms in dielectric optical interference devices,” Appl. Opt. 16, 2147–2151 (1977). [CrossRef] [PubMed]
  8. J. W. Griffin, K. A. Stahl, B. S. Matson, and W. T. Pawlewicz, “Relative importance of surface and volume scattering in all-dielectric mirrors,” Appl. Opt. 25, 1532–1533 (1986). [CrossRef] [PubMed]
  9. M. Sparks, “A simple method for calculating the optical properties of multilayer-dielectric reflectors,” J. Opt. Soc. Am. 67, 1590–1594 (1977). [CrossRef]
  10. H. G. Walther, E. Welsch, and J. Opfermann, “Calculation and measurement of the absorption in multilayer films by means of photoacoustics,” Thin Solid Films 142, 27–35 (1986). [CrossRef]
  11. G. V. Rosenberg, Optics of Thin Film Coatings (Fizmatgiz, Moscow, 1958, in Russian).
  12. H. Wolter, “Optik dünner Schichten,” in Handbuch der Physik (Springer-Verlag, Berlin, 1956), Vol. 24, pp. 461–473.
  13. F. Abelès, “Optical properties of very thin films,” Thin Solid Films 34, 291–302 (1976). [CrossRef]
  14. P. W. Smith, M. V. Schneider, and H. G. Danielmeier, “High-power single-frequency lasers using thin-film mode-selection filters,” Bell Syst. Tech. J. 48, 1405–1420 (1969). [CrossRef]
  15. W. R. Leeb, “Tunable thin film filters,” Appl. Opt. 15, 681–689 (1976).
  16. Y. V. Troitski, “Conducting surface model for the investigation of the properties of thin metal films,” Avtometriya No. 6, 91–95 (1972). [English transl.: Automatic Monitoring and Measuring No. 6 (1972)].
  17. Y. V. Troitski, Multilayer Coatings with Absorption Localized at Interlayer Boundaries, Preprint No. 471 (Institute of Automation and Electrometry, U.S.S.R. Academy of Sciences, Novosibirsk, U.S.S.R., 1991, in Russian).
  18. Y. V. Troitski, “Optical losses in dielectric multilayer coatings and their inlfuence on characteristics of laser resonators,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE 1782, 85–92 (1993). [CrossRef]
  19. Y. V. Troitski, Single Frequency Gas Lasers (Nauka, Novosibirsk, U.S.S.R., 1975, in Russian).
  20. Y. V. Troitski, Multiple Beam Interferometers for Reflected Light (Nauka, Novosibirsk, U.S.S.R., 1985, in Russian).
  21. L. N. Hadley and D. M. Dennison, “Reflection and transmission interference filters. 1. Theory,” J. Opt. Soc. Am. 37, 451–465 (1947). [CrossRef]
  22. S. Yamaguchi, “Theory of the optical properties of very thin inhomogeneous films,” J. Phys. Soc. Jpn. 17, 184–193 (1962). [CrossRef]
  23. Y. V. Troitski, “Absorption and scattering of light obliquely incident on a multilayer structure with absorptive layer boundaries,” Sov. J. Commun. Technol. Electron. 37(5), 23–29 (1992).
  24. P. H. Berning, “Theory and calculations of optical thin films,” in Physics of Thin Films, G. Hass, ed. (Academic, New York, 1963), Vol. 1.
  25. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1968).
  26. A. B. Latyshev, “Metal film as means for matching transparent media in millimeter–submillimeter range,” Radiotekh. Elektron. 34, 1376–1380 (1989).
  27. Y. V. Troitski, “Conducting surface as a model for describing the losses at the layer boundaries in a dielectric multilayered structure,” Opt. Spectrosc. 64, 83–86 (1988).
  28. P. Giacomo, “Les couches réfléchissantes multidieléctriques appliquées à l’interferomètre de Fabry–Perot. Etude théorique et expérimentale des couches réeles,” Rev. d’Opt. 35, 6–354 (1956).
  29. G. Koppelmann, “Zur Theorie der Wechselschichten aus schwachabsorbierenden Substanzen und ihre Verwendung als Interferometerspiegel,” Ann. Physik (Leipzig) 5, 388–396 (1960). [CrossRef]
  30. Y. V. Troitski, “Reflecting interferometer based on matched metallic film,” JETP Lett. 11, 183–185 (1970).
  31. Y. V. Troitski, “Present state and future prospects for reflection multiple-beam interferometry,” Optoelectron. Instrum. Data Process. No. 1, 87–105 (1985).
  32. Y. V. Troitski, “Progress in multiple-beam reflection interferometry,” in Specification, Production, and Testing of Optical Components and Systems, A. E. Gee and J.-F. Houee, eds., Proc. SPIE 2775, 216–225 (1996). [CrossRef]
  33. Y. V. Troitski, “Optical resonator with thin absorbing film as a mode selector,” Opt. Spectrosc. 25, 309–313 (1969).
  34. L. N. Hadley and D. M. Dennison, “Reflection and transmission interference filters. 2. Experimental, comparison with theory, results,” J. Opt. Soc. Am. 38, 483–496 (1948). [CrossRef] [PubMed]
  35. N. D. Goldina and Y. V. Troitski, “Narrow band filters in reflected light,” Opt. Spectrosc. 40, 532–534 (1976).
  36. N. N. Kamenev and Y. V. Troitski, “Metal-dielectric mirrors with single-sided light reflection,” Opt. Spectrosc. 54, 428–430 (1983).
  37. V. N. Bel’tyugov and Y. V. Troitski, “Polarizing laser mirrors,” Sov. J. Quantum Electron. 18, 627–629 (1988). [CrossRef]
  38. D. A. B. Miller, “Laser tuners and wavelength-selective detectors based on absorbers in standing waves,” IEEE J. Quantum Electron. 30, 732–749 (1994). [CrossRef]
  39. M. I. Zakharov and Y. V. Troitski, “About the calculation of an optical resonator with absorbing film,” Radiotekh. Elektron. 15, 2644–2645 (1970). English translation in Radio Eng. Electron. Phys. (1970).
  40. H. K. Pulker, “Optical losses in dielectric films,” Thin Solid Films 34, 343–347 (1976). [CrossRef]
  41. C. K. Carniglia, “Scalar scattering theory for multilayer optical coatings,” Opt. Eng. 18, 104–115 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited