Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Critical-point screening in random wave fields

Not Accessible

Your library or personal account may give you access

Abstract

Screening of vortices and other critical points in a two-dimensional random Gaussian field is studied by using large-scale computer simulations and analytic theory. It is shown that the topological charge imbalance and its variance in a bounded region can be obtained from signed zero crossings on the boundary of the region. A first-principles Gaussian theory of these zero crossings and their correlations is derived for the vortices and shown to be in good agreement with the computer simulation. An exact relationship is obtained between the variance of the charge imbalance and the charge correlation function, and this relationship is verified by comparison with the data. The results obtained are extended to arbitrarily shaped volumes in isotropic spaces of higher dimension.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Critical-point level-crossing geometry in random wave fields

Isaac Freund
J. Opt. Soc. Am. A 14(8) 1911-1927 (1997)

Level-crossing densities in random wave fields

David A. Kessler and Isaac Freund
J. Opt. Soc. Am. A 15(6) 1608-1618 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (60)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.