OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 15, Iss. 11 — Nov. 1, 1998
  • pp: 2913–2920

Analyzing the spectral dimensionality of outdoor visible and near-infrared illumination functions

David Slater and Glenn Healey  »View Author Affiliations

JOSA A, Vol. 15, Issue 11, pp. 2913-2920 (1998)

View Full Text Article

Acrobat PDF (243 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spectral properties of outdoor illumination functions can vary significantly, owing to atmospheric conditions and scene geometry. Using a statistical analysis of a comprehensive physical model, we show that the variation in outdoor illumination functions over both the visible range (0.33–0.7 μm) and the visible/near-infrared range (0.4–2.5 μm) can be represented accurately by use of seven-dimensional linear models. The physical model includes solar and scattered radiation as well as the effects of atmospheric gases and aerosols. The MODTRAN 3.5 code was employed for computing radiative transfer aspects of the model. We show that the new model has strong agreement over the visible wavelengths with the empirical study of Judd <i>et al</i>. [J. Opt. Soc. Am. <b>54</b>, 1031 (1964)]. We also demonstrate the accuracy of the model over the 0.4–2.5-μm spectral range, using measured outdoor illumination functions.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(150.2950) Machine vision : Illumination
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(330.1690) Vision, color, and visual optics : Color

David Slater and Glenn Healey, "Analyzing the spectral dimensionality of outdoor visible and near-infrared illumination functions," J. Opt. Soc. Am. A 15, 2913-2920 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. W. Basedow, D. C. Armer, and M. E. Anderson, “HYDICE system: implementation and performance,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 258–267 (1995).
  2. G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, and W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sensing Environ. 44, 127–143 (1993).
  3. J. Conel, R. O. Green, G. Vane, C. Bruegge, and R. Alley, “Radiometric spectral characteristics and comparison of ways to compensate for the atmosphere,” in Imaging Spectrometry II, G. Vane, ed., Proc. SPIE 834, 140–157 (1987).
  4. B. C. Gao and A. F. H. Goetz, “Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990).
  5. R. Richter, “Correction of atmospheric and topographic effects for high spatial resolution satellite imagery,” in Algorithms for Multispectral and Hyperspectral Imagery III, A. Iverson and S. S. Shen, eds., Proc. SPIE 3071, 216–224 (1997).
  6. D. J. Williams, A. Royer, N. T. O’Neill, S. Achal, and G. Weale, “Reflectance extraction from CASI spectra using radiative transfer simulations and a rooftop irradiance collector,” Remote Sensing Environ. 44, 165–178 (1993).
  7. G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980).
  8. R. Gershon, A. Jepson, and J. Tsotsos, “From [R, G, B] to surface reflectance: computing color constant descriptors in images,” Perception 17, 755–758 (1988).
  9. D. Brainard, B. Wandell, and W. Cowan, “Black light: how sensors filter spectral variation of the illuminant,” IEEE Trans. Biomed. Eng. 36, 140–149 (1989).
  10. J. Ho, B. Funt, and M. Drew, “Separating a color signal into illumination and surface reflectance components: theory and applications,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 966–977 (1990).
  11. M. D’Zmura, “Color constancy: surface color from changing illumination,” J. Opt. Soc. Am. A 9, 490–493 (1992).
  12. M. D’Zmura and G. Iverson, “Color constancy. I. Basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2148–2165 (1993).
  13. M. D’Zmura and G. Iverson, “Color constancy. II. Results for two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2166–2180 (1993).
  14. D. Marimont and B. Wandell, “Linear models of surface and illuminant spectra,” J. Opt. Soc. Am. A 9, 1905–1913 (1992).
  15. J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369 (1964).
  16. L. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986).
  17. J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
  18. G. Healey and L. Benites, “Linear models for spectral reflectance functions over the mid-wave and long-wave infrared,” J. Opt. Soc. Am. A 15, 2216–2227 (1998).
  19. D. B. Judd, D. L. MacAdam, and G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031–1040 (1964).
  20. S. R. Das and V. D. P. Sastri, “Spectral distribution and color of tropical daylight,” J. Opt. Soc. Am. 55, 319–323 (1965).
  21. G. T. Winch, M. C. Boshoff, C. J. Kok, and A. G. Du Toit, “Spectroradiometric and colorimetric characteristics of daylight in the Southern Hemisphere: Pretoria, South Africa,” J. Opt. Soc. Am. 56, 456–464 (1966).
  22. V. D. P. Sastri and S. R. Das, “Spectral distribution and color of north sky at Delhi,” J. Opt. Soc. Am. 56, 829–830 (1966).
  23. V. D. P. Sastri and S. R. Das, “Typical spectral distributions and color for tropical daylight,” J. Opt. Soc. Am. 58, 391–398 (1968).
  24. E. R. Dixon, “Spectral distribution of Australian daylight,” J. Opt. Soc. Am. 68, 437–450 (1978).
  25. J. Romero, A. García-Beltrán, and J. Hernández-Andrés, “Linear bases for representation of natural and artificial illuminants,” J. Opt. Soc. Am. A 14, 1007–1014 (1997).
  26. J. Hernández-Andrés, J. Romero, A. García-Beltrán, and J. L. Nieves, “Testing linear models on spectral daylight measurements,” Appl. Opt. 37, 971–977 (1998).
  27. A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” Tech. Rep. GL-TR-89–0122 (Geophysics Laboratory, Bedford, Mass., 1989).
  28. L. S. Bernstein, A. Berk, P. K. Acharya, and D. C. Robertson, “Very narrow band model calculations of atmospheric fluxes and cooling rates,” J. Atmos. Sci. 53, 2887–2904 (1996).
  29. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, and R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transf. 48, 469–507 (1992).
  30. S. A. Clough, M. J. Iacono, and J.-L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15, 761–15, 785 (1992).
  31. J. Wang, G. P. Anderson, H. E. Revercomb, and R. O. Knuteson, “Validation of FASCOD3 and MODTRAN3: comparison of model calculations with ground-based and airborne interferometer observations under clear-sky conditions,” Appl. Opt. 35, 6028–6040 (1996).
  32. G. H. Golub and C. F. van Loan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited