OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 2 — Feb. 1, 1998
  • pp: 375–388

Detection of moving objects in pulsed-x-ray fluoroscopy

Ping Xue and David L. Wilson  »View Author Affiliations


JOSA A, Vol. 15, Issue 2, pp. 375-388 (1998)
http://dx.doi.org/10.1364/JOSAA.15.000375


View Full Text Article

Enhanced HTML    Acrobat PDF (827 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigated the detectability of moving, low-contrast objects in white-noise image sequences. The computer-generated, cylindrical phantoms mimicked arteries, catheters, and guide wires in medical, x-ray fluoroscopy image sequences at 16 acquisitions/s (pulsed-16) or 32 acquisitions/s (pulsed-32). We measured detectability by using a reference–test, adaptive forced-choice method whereby reference and test presentations were alternated during an experimental session to minimize effects of subject attention and accuracy criteria. In the case of the largest cylinder (diameter 0.48 deg), the highest speed (5.86 deg/s) increased absolute detectability by 42% compared with that in the stationary case. With the smallest cylinder (diameter 0.023 deg), this motion decreased detectability by 51%. The dose savings of pulsed-16 was 18% of that for pulsed-32, with relatively little effect of velocity or object size. In general, subjects took slightly longer to respond in the case of low-acquisition fluoroscopy. Detectability data were modeled with a nonprewhitening matched filter that included a physiological, spatiotemporal contrast sensitivity function and a suboptimal, spatiotemporal signal template with time-limited memory.

© 1998 Optical Society of America

OCIS Codes
(110.7440) Imaging systems : X-ray imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(330.4150) Vision, color, and visual optics : Motion detection
(330.5020) Vision, color, and visual optics : Perception psychology

History
Original Manuscript: December 13, 1996
Revised Manuscript: August 18, 1997
Manuscript Accepted: August 25, 1997
Published: February 1, 1998

Citation
Ping Xue and David L. Wilson, "Detection of moving objects in pulsed-x-ray fluoroscopy," J. Opt. Soc. Am. A 15, 375-388 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-2-375


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. National Council on Radiation Protection and Measurement, rep. 100, Exposure of the U.S. Population From Diagnostic Medical Radiation (National Council on Radiation Protection and Measurement, Bethesda, Md., 1989).
  2. T. B. Shope, “Radiation-induced skin injuries from fluoroscopy,” Radiology 197(P), 209 (1995) (abstract).
  3. E. Krestel, ed., Imaging Systems for Medical Diagnostics (Siemens, Berlin, 1991).
  4. D. L. Wilson, P. Xue, R. Aufrichtig, “Perception of fluoroscopy last-image-hold,” Med. Phys. 21, 1875–1883 (1994). [CrossRef] [PubMed]
  5. P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “An adaptive reference/test paradigm with application to pulsed fluoroscopy perception,” Behav. Res. Methods Instrum. Comput. (to be published).
  6. P. Xue, D. L. Wilson, “Pulsed fluoroscopy detectability from interspersed adaptive forced choice measurements,” Med. Phys. 23, 1833–1843 (1996). [CrossRef] [PubMed]
  7. P. Xue, K. N. Jabri, D. L. Wilson, “The adaptive reference/test forced-choice method with application to fluoroscopy perception,” Medical Imaging 1997: Image Perception, H. L. Kundel, ed., Proc. SPIE3036, 298–307 (1997). [CrossRef]
  8. R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994). [CrossRef] [PubMed]
  9. R. Aufrichtig, C. Thomas, P. Xue, D. L. Wilson, “A model for perception of pulsed fluoroscopy image sequences,” J. Opt. Soc. Am. A 11, 3167–3176 (1994). [CrossRef]
  10. D. L. Wilson, K. N. Jabri, R. Aufrichtig “Perception of temporally filtered x-ray fluoroscopy images,” submitted to Med. Phys.
  11. D. L. Wilson, K. N. Jabri, P. Xue, R. Aufrichtig, “Perceived noise versus display noise in temporally filtered image sequences,” J. Electron. Imaging 5, 490–495 (1996). [CrossRef]
  12. N. L. Eigler, M. P. Eckstein, K. N. Mahrer, J. S. Whiting, “Improving detection of coronary morphological features from digital angiograms: effect of stenosis stabilization display,” Circulation 89, 2700–2709 (1994). [CrossRef] [PubMed]
  13. J. Whiting, D. Honig, E. Carterette, N. Eigler, “Observer performance in dynamic displays: effect of frame rate on visual signal detection in noisy images,” in Human Vision, Visual Processing, and Digital Display II, B. E. Rogowitz, M. H. Brill, J. P. Allebach, eds., Proc. SPIE1453, 165–176 (1991). [CrossRef]
  14. H. Luijendijk, “Practical experiments on noise perception in noisy images,” in Medical Imaging 1994: Image Perception, H. L. Kundel, ed., Proc. SPIE2166, 2–8 (1994). [CrossRef]
  15. J. S. Whiting, M. P. Eckstein, C. A. Morioka, N. L. Eigler, “Effect of additive noise, signal contrast, and feature motion on visual detection in structured noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 26–38 (1996). [CrossRef]
  16. M. P. Eckstein, J. S. Whiting, J. P. Thomas, “Detection and contrast discrimination of moving signals in uncorrelated gaussian noise,” Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 9–25 (1996). [CrossRef]
  17. M. J. Tapiovaara, “Efficiency of low-contrast detail detectability in fluoroscopic imaging,” Med. Phys. 24, 655–664 (1997). [CrossRef] [PubMed]
  18. M. P. Eckstein, J. S. Whiting, J. P. Thomas, “Role of knowledge in human visual temporal integration in spatiotemporal noise,” J. Opt. Soc. Am. A 13, 1960–1968 (1996). [CrossRef]
  19. P. Xue, D. L. Wilson, “Effects of motion blurring in x-ray fluoroscopy,” submitted to Med. Phys.
  20. L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985). [CrossRef] [PubMed]
  21. A. E. Burgess, “Statistically defined backgrounds: performance of a modified nonprewhitening observer model,” J. Opt. Soc. Am. A 11, 1237–1242 (1994). [CrossRef]
  22. A. E. Burgess, “Comparison of receiver operating characteristic and forced choice observer performance measurement methods,” Med. Phys. 22, 643–655 (1995). [CrossRef] [PubMed]
  23. A. Rose, Vision: Human and Electronic (Plenum, New York, 1973).
  24. R. F. Wagner, D. G. Brown, “Unified SNR analysis of medical imaging systems,” Phys. Med. Biol. 30, 489–518 (1985). [CrossRef]
  25. H. Fujita, K. Doi, M. L. Giger, “Investigation of basic imaging properties in digital radiography. 6. MTFs of II-TV digital imaging systems,” Med. Phys. 12, 713–719 (1985). [CrossRef] [PubMed]
  26. M. Livingstone, D. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988). [CrossRef] [PubMed]
  27. D. H. Kelly, “Motion and vision. II. Stabilized spatio-temporal threshold surface,” J. Opt. Soc. Am. 69, 1340–1349 (1979). [CrossRef] [PubMed]
  28. M. J. Morgan, S. Benton, “Motion-deblurring in human vision,” Nature (London) 340, 385–386 (1989). [CrossRef]
  29. J. W. Miller, E. J. Ludvigh, “The effect of relative motion on visual acuity,” Surv. Ophthalmol. 7, 83–116 (1962). [PubMed]
  30. G. M. Long, D. A. Rourke, “Training effects on the resolution of moving targets—dynamic visual acuity,” Human Factors 31, 443–451 (1989).
  31. T. R. Morrison, “A review of dynamic visual acuity,” Monograph 28 (Naval Aerospace Medical Research Laboratory, Pensacola, Fla., 1980).
  32. T. Carney, D. A. Silverstein, S. A. Klein, “Vernier acuity during image rotation and translation: visual performance limits,” Vision Res. 35, 1951–1964 (1995). [CrossRef] [PubMed]
  33. D. Burr, J. Ross, M. C. Marrone, “Seeing objects in motion,” Proc. R. Soc. London 227, 249–265 (1986). [CrossRef]
  34. M. Fahle, T. Poggio, “Visual hyperacuity: spatiotemporal interpolation in human vision,” in Image Understanding, S. Ullman, W. Richards, eds. (Ablex, Norwood, N.J., 1984), pp. 49–77.
  35. L. B. Stelmach, P. J. Hearty, “Requirements for static and dynamic spatial resolution in advanced television systems: a psychophysical evaluation,” J. Soc. Motion Pict. TV Eng. 100, 5–9 (1991).
  36. M. Fahle, T. Poggio, “Visual hyperacuity: spatiotemporal interpolation in human vision,” Proc. R. Soc. London 213, 451–477 (1981). [CrossRef]
  37. Unlike in some new experiments with a high-contrast fixation marker that moves with the object,38,39 subjects do not report eye motion during the initial detection process. However, they do report that, with easy-to-see targets, they detect and possibly track the target cylinder for a few cycles, leading to enhanced confidence in detection.
  38. R. Manjeshwar, D. L. Wilson, “Role of smooth pursuit eye-movements on the detection of moving objects in x-ray fluoroscopy noise,” in Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1997).
  39. R. Manjeshwar, D. L. Wilson, “Eye-tracking of moving objects in x-ray fluoroscopy enhances detectability,” presented at the Seventh Far West Image Perception Conference, Tucson, Ariz., 1997.
  40. H. L. V. Trees, Detection, Estimation, and Modulation Theory (Wiley, New York, 1968).
  41. R. N. McDonough, A. D. Whalen, Detection of Signals in Noise, 2nd ed. (Academic, San Diego, Calif., 1995).
  42. A. E. Burgess, H. Ghandeharian, “Visual signal detection. III. On Bayesian use of prior knowledge and cross-correlation,” J. Opt. Soc. Am. A 2, 1498–1507 (1985). [CrossRef] [PubMed]
  43. D. L. Wilson, K. N. Jabri, P. Xue, “Modeling human visual detection of low-contrast objects in fluoroscopy image sequences,” in Medical Imaging 1997: Image Perception, H. L. Kundel, ed., Proc. SPIE3036, 21–30 (1997). [CrossRef]
  44. S. L. Fritz, S. E. Mirvis, S. O. Pais, S. Roys, “Phantom evaluation of angiographer performance using low frame rate acquisition fluoroscopy,” Med. Phys. 15, 600–603 (1988). [CrossRef] [PubMed]
  45. A. B. Watson, J. Albert, J. Ahumada, J. E. Farrell, “Window of visibility: a pschophysical theory of fidelity in time-sampled visual motion displays,” J. Opt. Soc. Am. A 3, 300–307 (1986). [CrossRef]
  46. E. Ammann, G. Wiede, “Generators and tubes in interventional radiology,” in Syllabus: A Categorial Course in Physics, Physical and Technical Aspects of Angiography and Interventional Angiography, S. Balter, T. B. Shope, eds., (RSNA, Oak Brook, Ill., 1995), pp. 59–74.
  47. A. Abdel-Malek, F. Yassa, J. Bloomer, “An adaptive gating approach for x-ray dose reduction during interventional procedures,” IEEE Trans. Med. Imaging 13, 2–12 (1994). [CrossRef]
  48. R. Aufrichtig, D. L. Wilson, “X-ray fluoroscopy spatio-temporal filtering with object detection,” IEEE Trans. Med. Imaging 14, 733–746 (1995). [CrossRef] [PubMed]
  49. A. E. Burgess, R. F. Wagner, R. Jennings, H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214, 93–94 (1981). [CrossRef] [PubMed]
  50. J. G. Robson, “Spatial and temporal contrast-sensitivity functions of the human visual system,” J. Opt. Soc. Am. 56, 1141–1142 (1966). [CrossRef]
  51. D. H. Kelly, “Frequency doubling in visual responses,” J. Opt. Soc. Am. A 56, 1628–1633 (1966). [CrossRef]
  52. D. H. Kelly, “Retinal inhomogeneity. I. Spatiotemporal contrast sensitivity,” J. Opt. Soc. Am. A 1, 107–113 (1984). [CrossRef] [PubMed]
  53. F. van Nes, J. J. Koenderink, H. Nas, M. A. Bouman, “Spatiotemporal modulation transfer in the human eye,” J. Opt. Soc. Am. 57, 1082–1088 (1967). [CrossRef] [PubMed]
  54. S. M. Kay, J. S. L. Marple, “Spectrum analysis—a modern perspective,” Proc. IEEE 69, 1380–1419 (1981). [CrossRef]
  55. A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited