OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 15, Iss. 3 — Mar. 1, 1998
  • pp: 689–694

Design of diffractive phase elements that realize axial-intensity modulation based on the conjugate-gradient method

Rong Liu, Ben-Yuan Gu, Bi-Zhen Dong, and Guo-Zhen Yang  »View Author Affiliations

JOSA A, Vol. 15, Issue 3, pp. 689-694 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (222 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We employ the conjugate-gradient method to design diffractive phase elements (DPE’s) that implement the predefined axial-intensity modulation over a given axial region. We introduce an error function for guiding the design of DPE’s and for evaluating their performance. Numerical simulations are carried out for several examples, for instance, the design of the DPE that generates four foci with equal or unequal spacing between the consecutive foci along the optical axis and the DPE that produces a sinusoidlike axial-intensity modulation. The obtained results show that the designed DPE’s can satisfactorily match practical requirements.

© 1998 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics

Original Manuscript: June 20, 1997
Revised Manuscript: October 7, 1997
Manuscript Accepted: September 18, 1997
Published: March 1, 1998

Rong Liu, Ben-Yuan Gu, Bi-Zhen Dong, and Guo-Zhen Yang, "Design of diffractive phase elements that realize axial-intensity modulation based on the conjugate-gradient method," J. Opt. Soc. Am. A 15, 689-694 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Wyrowski, “Design theory of diffractive elements in the paraxial domain,” J. Opt. Soc. Am. A 10, 1553–1561 (1993). [CrossRef]
  2. J. N. Mait, “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A 12, 2145–2158 (1995). [CrossRef]
  3. A. Vasara, J. Turunen, A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989). [CrossRef] [PubMed]
  4. N. Davidson, A. A. Friesem, E. Hasman, “Efficient formation of nondiffracting beams with uniform intensity along the propagation direction,” Opt. Commun. 88, 326–330 (1992). [CrossRef]
  5. R. P. MacDonald, J. Chrostowski, S. A. Boothroyd, B. A. Syrett, “Holographic formation of a diode laser nondiffracting beam,” Appl. Opt. 32, 6470–6474 (1993). [CrossRef] [PubMed]
  6. R. Piestun, J. Shamir, “Control of wave-front propagation with diffractive elements,” Opt. Lett. 19, 771–773 (1994). [CrossRef] [PubMed]
  7. J. Rosen, “Synthesis of nondiffracting beams in free space,” Opt. Lett. 19, 369–371 (1994). [PubMed]
  8. V. V. Kotlyar, S. N. Khonina, V. A. Soifer, “Algorithm for the generation of non-diffracting Bessel modes,” J. Mod. Opt. 42, 1231–1239 (1995). [CrossRef]
  9. C. Paterson, R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124, 121–130 (1996). [CrossRef]
  10. C. Paterson, R. Smith, “Helicon waves: propagation-invariant waves in a rotating coordinate system,” Opt. Commun. 124, 131–140 (1996). [CrossRef]
  11. L. Niggl, T. Lanzl, M. Maier, “Properties of Bessel beams generated by periodic gratings of circular symmetry,” J. Opt. Soc. Am. A 14, 27–33 (1997). [CrossRef]
  12. N. Davidson, A. A. Friesem, E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16, 523–525 (1991). [CrossRef] [PubMed]
  13. J. Sochacki, S. Bará, Z. Jaroszewicz, A. Kolodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett. 17, 7–9 (1992). [CrossRef] [PubMed]
  14. S. N. Khonina, V. V. Kotlyar, V. A. Soifer, “Calculation of the focusators into a longitudinal line-segment and study of a focal area,” J. Mod. Opt. 40, 761–769 (1993). [CrossRef]
  15. B.-Z. Dong, G.-Z. Yang, B.-Y. Gu, O. K. Erosy, “Iterative optimization approach for designing an axicon with long focal depth and high transverse resolution,” J. Opt. Soc. Am. A 13, 97–103 (1996). [CrossRef]
  16. M. A. Golub, L. L. Doskolovich, N. L. Kazanskiy, S. I. Kharitonov, V. A. Soifer, “Computer generated diffractive multi-focal lens,” J. Mod. Opt. 39, 1245–1251 (1992). [CrossRef]
  17. J. Rosen, A. Yariv, “Synthesis of an arbitrary axial field profile by computer-generated holograms,” Opt. Lett. 19, 843–845 (1994). [CrossRef] [PubMed]
  18. B. Salik, J. Rosen, A. Yariv, “One-dimensional beam shaping,” J. Opt. Soc. Am. A 12, 1702–1706 (1995). [CrossRef]
  19. R. Piestun, B. Spektor, J. Shamir, “Wave fields in three dimensions: analysis and synthesis,” J. Opt. Soc. Am. A 13, 1837–1848 (1996). [CrossRef]
  20. R. Piestun, B. Spektor, J. Shamir, “Unconventional light distribution in three-dimensional domains,” J. Mod. Opt. 43, 1495–1507 (1996). [CrossRef]
  21. V. V. Kotlyar, S. N. Khonina, V. A. Soifer, “Iterative calculation of diffractive optical elements focusing into a three-dimensional domain and onto the surface of the body of rotation,” J. Mod. Opt. 43, 1509–1524 (1996). [CrossRef]
  22. M. Avriel, Nonlinear Programming: Analysis and Methods (Prentice-Hall, Englewood Cliffs, N. J., 1976), pp. 299–307.
  23. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
  24. J. R. Fienup, “Phase-retrieval algorithms for a complicated optical system,” Appl. Opt. 32, 1737–1746 (1993). [CrossRef] [PubMed]
  25. J. R. Fienup, “Gradient-search phase retrieval algorithm for inverse synthetic aperture radar,” Opt. Eng. 13, 3237–3242 (1994). [CrossRef]
  26. G. Leone, R. Pierri, F. Soldovieri, “Reconstruction of complex signals from intensities of Fourier-transform pairs,” J. Opt. Soc. Am. A 13, 1546–1556 (1996). [CrossRef]
  27. S. T. Teiwes, B. Schillinger, T. Beth, F. Wyrowski, “Efficient design of paraxial diffractive phase elements with descent search methods,” in Diffractive and Holographic Optics II, Ivan Cindrich, ed., Proc. SPIE2404, 40–49 (1994). [CrossRef]
  28. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968), pp. 13, 58, and 63.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited