OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 15, Iss. 4 — Apr. 1, 1998
  • pp: 769–776

Psychophysical evidence for a functional hierarchy of motion processing mechanisms

Peter J. Bex, Andrew B. Metha, and Walter Makous  »View Author Affiliations

JOSA A, Vol. 15, Issue 4, pp. 769-776 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (4462 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Current models of motion perception typically describe mechanisms that operate locally to extract direction and speed information. To deal with the movement of self or objects with respect to the environment, higher-level receptive fields are presumably assembled from the outputs of such local analyzers. We find that the apparent speed of gratings viewed through four spatial apertures depends on the interaction of motion directions among the apertures, even when the motion within each aperture is identical except for direction. Specifically, local motion consistent with a global pattern of radial motion appears 32% faster than that consistent with translational or rotational motion. The enhancement of speed is not reflected in detection thresholds and persists in spite of instructions to fixate a single local aperture and ignore the global configuration. We also find that a two-dimensional pattern of motion is necessary to elicit the effect and that motion contrast alone does not produce the enhancement. These results implicate at least two serial stages of motion-information processing: a mechanism to code the local direction and speed of motion, followed by a global mechanism that integrates such signals to represent meaningful patterns of movement, depending on the configuration of the local motions.

© 1998 Optical Society of America

OCIS Codes
(330.4150) Vision, color, and visual optics : Motion detection
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6790) Vision, color, and visual optics : Temporal discrimination

Original Manuscript: June 20, 1997
Revised Manuscript: November 25, 1997
Manuscript Accepted: December 1, 1997
Published: April 1, 1998

Peter J. Bex, Andrew B. Metha, and Walter Makous, "Psychophysical evidence for a functional hierarchy of motion processing mechanisms," J. Opt. Soc. Am. A 15, 769-776 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. H. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985). [CrossRef]
  2. J. P. van Santen, G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985). [CrossRef] [PubMed]
  3. A. B. Watson, A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985). [CrossRef] [PubMed]
  4. K. Zhang, M. I. Sereno, M. E. Sereno, “Emergence of position-independent detectors of sense of rotation and dilation with Hebbian learning: an analysis,” Neural Comput. 5, 597–612 (1993). [CrossRef]
  5. M. Lappe, J. P. Rauschecker, “Heading detection from optic flow,” Nature (London) 369, 712–713 (1994). [CrossRef]
  6. M. C. Morrone, D. C. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995). [CrossRef]
  7. D. Regan, K. I. Beverly, “Looming detectors in the human visual pathway,” Vision Res. 18, 415–412 (1978). [CrossRef] [PubMed]
  8. D. Regan, K. I. Beverly, “Visual responses to vorticity and the neural analysis of optic flow,” J. Opt. Soc. Am. A 2, 280–283 (1985). [CrossRef] [PubMed]
  9. N. J. Wade, “A selective history of the study of visual motion aftereffects,” Perception 23, 1111–1134 (1994). [CrossRef] [PubMed]
  10. P. Cavanagh, O. E. Favreau, “Motion aftereffect: a global mechanism for the perception of rotation,” Perception 9, 175–182 (1980). [CrossRef] [PubMed]
  11. R. J. Snowden, A. B. Milne, “The effects of adapting to complex motions: Position invariance and tuning to spiral motions,” J. Cogn. Neurosci. 8, 435–452 (1996).
  12. T. C. A. Freeman, M. G. Harris, “Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure,” Vision Res. 32, 81–87 (1992). [CrossRef] [PubMed]
  13. A. B. Sekuler, “Simple-pooling of unidirectional motion predicts speed discrimination for looming stimuli,” Vision Res. 32, 2277–2288 (1992). [CrossRef] [PubMed]
  14. P. Verghese, L. S. Stone, “Combining speed information across space,” Vision Res. 15, 2811–2823 (1995). [CrossRef]
  15. P. Verghese, L. S. Stone, “Perceived visual speed constrained by image segmentation,” Nature (London) 381, 161–163 (1996). [CrossRef]
  16. B. J. Geesaman, N. Qian, “A novel speed illusion involving expansion and rotation patterns,” Vision Res. 36, 3281–3292 (1996). [CrossRef] [PubMed]
  17. P. J. Bex, W. Makous, “Radial motion looks faster,” Vision Res. 37, 3399–3405 (1997). [CrossRef]
  18. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991). [CrossRef] [PubMed]
  19. A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983). [CrossRef] [PubMed]
  20. W. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 292–297 (1951).
  21. S. P. McKee, “A local mechanism for differential velocity detection,” Vision Res. 21, 491–500 (1981). [CrossRef] [PubMed]
  22. L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992). [CrossRef] [PubMed]
  23. J. Allman, F. Miezin, E. McGuinness, “Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local–global comparisons in visual neurons,” Annu. Rev. Neurosci. 8, 407–430 (1985). [CrossRef]
  24. D. C. Van Essen, C. H. Anderson, D. J. Felleman, “Information processing in the primate visual system: an integrated systems perspective,” Science 255, 419–423 (1992). [CrossRef] [PubMed]
  25. H. A. Saito, M. Yukei, K. Tanaka, K. Hikosaka, Y. Fukada, E. Iwai, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 6, 145–157 (1986). [PubMed]
  26. J. H. R. Maunsell, D. C. Van Essen, “The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey,” J. Neurosci. 3, 2563–2586 (1983). [PubMed]
  27. T. Pasternak, W. H. Merigan, “Motion perception following lesions of the superior temporal sulcus in the monkey,” Cereb. Cortex 4, 247–259 (1994). [PubMed]
  28. K. Tanaka, H. Saito, “Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey,” J. Neurophysiol. 62, 626–641 (1989). [PubMed]
  29. C. J. Duffy, R. H. Wurtz, “Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli,” J. Neurophysiol. 65, 1329–1345 (1991). [PubMed]
  30. G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992). [CrossRef] [PubMed]
  31. M. S. Graziano, R. A. Andersen, R. J. Snowden, “Tuning of MST neurons to spiral motions,” J. Neurosci. 14, 54–67 (1994). [PubMed]
  32. J. Kim, K. Mulligan, H. Sherk, “Stimulated optic flow and extrastriate cortex. I. Optic flow versus texture,” J. Neurophysiol. 77, 554–561 (1997). [PubMed]
  33. K. Mulligan, J. Kim, H. Sherk, “Stimulated optic flow and extrastriate cortex. II. Responses to bar versus large-field stimuli,” J. Neurophysiol. 77, 562–570 (1997). [PubMed]
  34. H. G. Krapp, R. Hengstenberg, “Estimation of self motion by optic flow processing in single visual interneurons,” Nature (London) 384, 463–466 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited