OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 15, Iss. 5 — May. 1, 1998
  • pp: 1361–1370

Shape-invariant anisotropic Gaussian Schell-model beams: a complete characterization

R. Simon and N. Mukunda  »View Author Affiliations

JOSA A, Vol. 15, Issue 5, pp. 1361-1370 (1998)

View Full Text Article

Acrobat PDF (307 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a complete analysis of shape-invariant anisotropic Gaussian Schell-model beams, which generalizes the shape-invariant beams introduced earlier by Gori and Guattari [Opt. Commun. 48, 7 (1983)] and the recently discovered twisted Gaussian Schell-model beams. We show that the set of all shape-invariant Gaussian Schell-model beams forms a six-parameter family embedded within the ten-parameter family of all anisotropic Gaussian Schell-model beams. These shape-invariant beams are generically anisotropic and possess a saddlelike phase front in addition to a twist phase in such a way that the tendency of the latter to twist the beam in the course of propagation is exactly countered by the former. The propagation characteristics of these beams turn out to be surprisingly simple and are akin to those of coherent Gaussian beams. They are controlled by a single parameter that plays the role of the Rayleigh range; its value is determined by an interplay among the beam widths, transverse coherence lengths, and the strength of the twist parameter. The positivity requirement on the cross-spectral density is shown to be equivalent to an upper bound on the twist parameter. The entire analysis is carried out by use of the Wigner distribution, which reduces the problem to a purely algebraic one involving 4×4 matrices, thus rendering the complete solution immediately transparent.

© 1998 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.6600) Coherence and statistical optics : Statistical optics
(260.0260) Physical optics : Physical optics
(350.5500) Other areas of optics : Propagation

R. Simon and N. Mukunda, "Shape-invariant anisotropic Gaussian Schell-model beams: a complete characterization," J. Opt. Soc. Am. A 15, 1361-1370 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. E. Siegman, Lasers (Oxford U. Press, Oxford, 1986), Chap. 19.
  2. H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
  3. R. W. Boyd, “Intuitive explanation of the phase anomaly of focused light beams,” J. Opt. Soc. Am. 70, 877–880 (1980).
  4. R. Simon and N. Mukunda, “Iwasawa decomposition for SU(1, 1) and the Gouy effect for squeezed states,” Opt. Commun. 95, 39–45 (1993); G. S. Agarwal and R. Simon, “An experiment for the study of the Gouy effect for the squeezed vacuum,” Opt. Commun. 100, 411–414 (1993).
  5. R. Simon and N. Mukunda, “Bargmann invariant and the geometry of the Gouy effect,” Phys. Rev. Lett. 70, 880–883 (1993).
  6. B. E. A. Saleh, “Intensity distribution due to a partially coherent field and the Collett–Wolf equivalence theorem in the Fresnel zone,” Opt. Commun. 30, 135–138 (1979).
  7. P. D. Santis, F. Gori, G. Guattari, and C. Palma, “An example of a Collett–Wolf source,” Opt. Commun. 29, 256–260 (1979).
  8. W. H. Carter and M. Bertolotti, “An analysis of the far-field coherence and radiant intensity of light scattered from liquid crystals,” J. Opt. Soc. Am. 68, 329–333 (1978).
  9. J. T. Foley and M. S. Zubairy, “The directionality of Gaussian Schell-model beams,” Opt. Commun. 26, 297–300 (1978).
  10. A. T. Friberg and R. J. Sudol, “Propagation parameters of Gaussian Schell-model beams,” Opt. Commun. 41, 383–387 (1982).
  11. R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Generalized rays in first order optics: transformation properties of Gaussian Schell-model fields,” Phys. Rev. A 29, 3273–3279 (1984).
  12. H. Weber, “Wave optical analysis of the phase space analyzer,” J. Mod. Opt. 39, 543–559 (1992).
  13. J. Serna, P. M. Mejias, and R. Martinez-Herrero, “Beam quality dependence on the coherence length of Gaussian Schell-model fields propagating through ABCD optical systems,” J. Mod. Opt. 39, 625–635 (1992).
  14. A. Gamliel and G. P. Agarwal, “Wolf effect in homogeneous and inhomogeneous media,” J. Opt. Soc. Am. A 7, 2184–2192 (1990).
  15. F. Gori, G. L. Marcopoli, and M. Santarsiero, “Spectrum invariance on paraxial propagation,” Opt. Commun. 81, 123–130 (1991).
  16. E. Wolf, “Invariance of the spectrum of light on propagation,” Phys. Rev. Lett. 56, 1370–1372 (1986).
  17. E. Collett and E. Wolf, “Is complete coherence necessary for the generation of highly directional light beams?” Opt. Lett. 2, 27–29 (1978).
  18. E. Wolf and E. Collett, “Partially coherent sources which produce the same intensity distribution as a laser,” Opt. Commun. 25, 293–296 (1978).
  19. G. Gori and R. Grella, “Shape invariant propagation of polychromatic fields,” Opt. Commun. 49, 173–177 (1984).
  20. F. Gori, G. Guattari, C. Palma, and C. Padovani, “A class of shape invariant fields,” Opt. Commun. 66, 255–259 (1988).
  21. R. Gase, “The multimode laser radiation as a Gaussian Schell-model beam,” J. Mod. Opt. 38, 1107–1115 (1991).
  22. R. Martinez-Herrero and P. M. Mejias, “Expansion of the cross-spectral density of general fields and its applications to beam characterization,” Opt. Commun. 94, 197–202 (1992); R. Gase, “Methods of quantum mechanics applied to partially coherent light beams,” J. Opt. Soc. Am. A 11, 2121–2129 (1994).
  23. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995).
  24. A. T. Friberg and J. Turunen, “Imaging of Gaussian Schell-model sources,” J. Opt. Soc. Am. A 5, 713–720 (1988).
  25. R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Partially coherent beams and a generalized ABCD-law,” Opt. Commun. 65, 322–328 (1988).
  26. R. Simon and N. Mukunda, “Twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 10, 95–109 (1993).
  27. A. T. Friberg, E. Tervonen, and J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11, 1818–1826 (1994).
  28. R. Simon, K. Sundar, and N. Mukunda, “Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum,” J. Opt. Soc. Am. A 10, 2008–2016 (1993).
  29. K. Sundar, R. Simon, and N. Mukunda, “Twisted Gaussian Schell-model beams. II. Spectrum analysis and propagation characteristics,” J. Opt. Soc. Am. A 10, 2017–2023 (1993).
  30. E. Wolf, “New theory of partial coherence in the space-frequency domain: I. Spectra and cross-spectra of steady state sources,” J. Opt. Soc. Am. 72, 343–351 (1982).
  31. D. Ambrosini, V. Bagini, F. Gori, and M. Santarsiero, “Twisted Gaussian Schell-model beams: a superposition model,” J. Mod. Opt. 41, 1391–1399 (1994).
  32. Y. Li and E. Wolf, “Radiation from anisotropic Gaussian Schell-model sources,” Opt. Lett. 7, 256–258 (1982).
  33. R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Anisotropic Gaussian Schell-model beams: passage through optical systems and associated invariants,” Phys. Rev. A 31, 2419–2434 (1985).
  34. F. Gori and G. Guattari, “A new type of optical fields,” Opt. Commun. 48, 7–12 (1983).
  35. R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Gaussian Wigner distributions in quantum mechanics and optics,” Phys. Rev. A 36, 3868–3880 (1987); “Gaussian pure states in quantum mechanics and the symplectic group,” Phys. Rev. A 37, 2028–2038 (1988); R. Simon, N. Mukunda, and B. Dutta, “Quantum-noise matrix, for multimode systems: U(n) invariance, squeezing, and normal forms,” Phys. Rev. A PLRAAN 49, 1567–1683 (1994).
  36. K. Sundar, N. Mukunda, and R. Simon, “Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams,” J. Opt. Soc. Am. A 12, 560–569 (1995).
  37. R. Simon, A. T. Friberg, and E. Wolf, “Transfer of radiance by twisted Gaussian Schell-model beams in paraxial systems,” Pure Appl. Opt. 5, 331–343 (1996).
  38. G. Breitenbach, S. Schiller, and T. Mylnek, “Measurement of the quantum states of squeezed light,” Nature (London) 387, 471–475 (1997).
  39. J. Williamson, “On the algebraic problem concerning the normal forms of linear dynamical systems,” Am. J. Math. 58, 141–163 (1936).
  40. E. C. G. Sudarshan, N. Mukunda, and R. Simon, “Realization of first order optical systems using thin lenses,” Opt. Acta 32, 855–872 (1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited