OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 5 — May. 1, 1998
  • pp: 1411–1422

Mixing formulas in the time domain

Gerhard Kristensson, Sten Rikte, and Ari Sihvola  »View Author Affiliations


JOSA A, Vol. 15, Issue 5, pp. 1411-1422 (1998)
http://dx.doi.org/10.1364/JOSAA.15.001411


View Full Text Article

Enhanced HTML    Acrobat PDF (373 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dispersive properties of dielectric materials in both the time and the frequency domains are discussed. Special emphasis is placed on the treatment of heterogeneous materials, particularly two-phase mixtures. A time-domain Maxwell–Garnett rule is derived that differs from the corresponding frequency-domain formula in that it is expressed in terms of convolutions and inverse operators of the susceptibility kernels of the materials. Much of the analysis deals with the question of how the temporal dispersion of the dielectric responses of various physical materials is affected by the mixing process. Debye, Lorentz, Drude, and modified Debye susceptibility models are treated in detail.

© 1998 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.2110) Physical optics : Electromagnetic optics
(290.0290) Scattering : Scattering
(290.3770) Scattering : Long-wave scattering

History
Original Manuscript: July 3, 1997
Revised Manuscript: January 16, 1998
Manuscript Accepted: December 17, 1997
Published: May 1, 1998

Citation
Gerhard Kristensson, Sten Rikte, and Ari Sihvola, "Mixing formulas in the time domain," J. Opt. Soc. Am. A 15, 1411-1422 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-5-1411


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. J. F. Böttcher, Theory of Electric Polarization, 2nd ed. (Elsevier, Amsterdam, 1973).
  2. A. Lakhtakia, “Size-dependent Maxwell–Garnett formula from an integral equation formalism,” Optik (Stuttgart) 91, 134–137 (1992).
  3. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  4. R. Landauer, “Electrical conductivity in inhomogeneous media,” in Electrical Transport and Optical Properties in Inhomogeneous Media, Vol. 40 of AIP Conference Proceedings, J. C. Garland, D. B. Tanner, eds. (American Institute of Physics, New York, 1978), pp. 2–45.
  5. A. Karlsson, G. Kristensson, “Constitutive relations, dissipation and reciprocity for the Maxwell equations in the time domain,” J. Electromagn. Waves Appl. 6, 537–551 (1992). [CrossRef]
  6. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).
  7. W. S. Weiglhofer, A. Lakhtakia, “On causality requirements for material media,” Arch. Elektrotech.Übertragungstech. (Int. J. Electron. Commun.) 50, 389–391 (1996).
  8. J. C. M. Garnett, “Colours in metal glasses and in metal films,” Philos. Trans. R. Soc. London Ser. A 203, 385–420 (1904). [CrossRef]
  9. A. D. Yaghjian, “Electric dyadic Green’s functions in the source region,” Proc. IEEE 68, 248–263 (1980). [CrossRef]
  10. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Materials Science (Springer-Verlag, Berlin, 1995).
  11. B. K. P. Scaife, Principles of Dielectrics (Clarendon, Oxford, 1989).
  12. A. T. C. Chang, T. T. Wilheit, “Remote sensing of atmospheric water vapor, liquid water, and wind speed at the ocean surface by passive microwave techniques from the Nimbus 5 satellite,” Radio Sci. 14, 793–802 (1979). [CrossRef]
  13. U. Kaatze, “Microwave dielectric properties of water,” in Microwave Aquametry, A. Kraszewski, ed. (IEEE, Piscataway, N.J., 1996), Chap. 2, pp. 37–53.
  14. O. Barajas, H. A. Buckmaster, “Calculation of the temperature dependence of the Debye and relaxation activation parameters from complex permittivity data for light water,” in Microwave Aquametry, A. Kraszewski, ed. (IEEE, Piscataway, N.J., 1996), Chap. 3, pp. 55–66.
  15. G. C. Gerace, E. K. Smith, “A comparison of cloud models,” IEEE Antennas Propag. Mag. 32, 32–38 (1990). [CrossRef]
  16. H. J. Liebe, T. Manabe, G. A. Hufford, “Millimeter-wave attenuation and delay rates due to fog/cloud conditions,” IEEE Trans. Antennas Propag. 37, 1617–1623 (1989). [CrossRef]
  17. L. D. Landau, E. M. Lifshitz, L. P. Pitaevskiı̆, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984).
  18. M. T. Hallikainen, F. T. Ulaby, M. Abdelrazik, “Dielectric properties of snow in the 3 to 37 GHz range,” IEEE Trans. Antennas Propag. 34, 1329–1340 (1986). [CrossRef]
  19. R. Kress, Linear Integral Equations (Springer-Verlag, Berlin, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited