OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 1 — Jan. 1, 1999
  • pp: 188–190

Correspondence between super-Gaussian and flattened Gaussian beams

Massimo Santarsiero and Riccardo Borghi  »View Author Affiliations


JOSA A, Vol. 16, Issue 1, pp. 188-190 (1999)
http://dx.doi.org/10.1364/JOSAA.16.000188


View Full Text Article

Acrobat PDF (175 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Relations connecting the parameters of a super-Gaussian with those of a flattened Gaussian beam are determined by minimizing the mean squared difference of the two profiles. Simplified analytical expressions are suggested and tested for values of the power parameter of the super-Gaussian function up to 20.

© 1999 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(140.3460) Lasers and laser optics : Lasers
(350.5500) Other areas of optics : Propagation

Citation
Massimo Santarsiero and Riccardo Borghi, "Correspondence between super-Gaussian and flattened Gaussian beams," J. Opt. Soc. Am. A 16, 188-190 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-1-188


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. De Silvestri, P. Laporta, V. Magni, and O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
  2. A. Parent, M. Morin, and P. Lavigne, “Propagation of super-Gaussian field distributions,” Opt. Quantum Electron. 24, 1071–1079 (1992).
  3. B. Lü, B. Zhang, and X. Wang, “Three-dimensional intensity distribution of focused super-Gaussian beams,” Opt. Commun. 126, 1–6 (1996).
  4. F. Gori, “Flattened Gaussian beams,” Opt. Commun. 107, 335–341 (1994).
  5. C. J. R. Sheppard and S. Saghafi, “Flattened light beams,” Opt. Commun. 132, 144–152 (1996).
  6. S. Bollanti, P. Di Lazzaro, D. Murra, and A. Torre, “Analytical propagation of supergaussian-like beams in the far-field,” Opt. Commun. 138, 35–39 (1997).
  7. V. Bagini, R. Borghi, F. Gori, A. M. Pacileo, M. Santarsiero, D. Ambrosini, and G. Schirripa Spagnolo, “Propagation of axially symmetric flattened Gaussian beams,” J. Opt. Soc. Am. A 13, 1385–1394 (1996).
  8. M. Santarsiero, D. Aiello, R. Borghi, and S. Vicalvi, “Focusing of axially symmetric flattened Gaussian beams,” J. Mod. Opt. 44, 633–650 (1997).
  9. R. Borghi, M. Santarsiero, and S. Vicalvi, “Focal shift of focused flat-topped beams,” Opt. Commun. 154, 243–248 (1998).
  10. S.-A. Amarande, “Beam propagation factor and the Kurtosis parameter of flattened Gaussian beams,” Opt. Commun. 129, 311–317 (1996).
  11. C. Palma and V. Bagini, “Propagation of super-Gaussian beams,” Opt. Commun. 111, 6–10 (1994).
  12. S.-A. Amarande, “Approximation of super-Gaussian beams by generalized flattened Gaussian beams,” in XI International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, D. R. Hall and H. J. Baker, eds., Proc. SPIE 3092, 345–348 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited