OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 1 — Jan. 1, 1999
  • pp: 6–16

Multiresolution probability analysis of random fields

John J. Heine, Stanley R. Deans, and Laurence P. Clarke  »View Author Affiliations


JOSA A, Vol. 16, Issue 1, pp. 6-16 (1999)
http://dx.doi.org/10.1364/JOSAA.16.000006


View Full Text Article

Enhanced HTML    Acrobat PDF (2012 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multiresolution wavelet methods can be used to simplify the statistical analysis of highly correlated non-Gaussian random fields. Specific illustrations are given with the use of high-resolution digital mammograms. Fields of this kind are often difficult to analyze with parametric statistical methods. The introduction of a wavelet expansion simplifies the problem and permits the parametric analysis. The raw image is decomposed, and each expansion component is analyzed separately. The analysis applies to the individual components rather than the raw field. A suitable choice of probability function for modeling the individual components follows from the degree of detail information contained in each expansion component. The method is facilitated by using a linear operator approach. This method leads to a family of probability functions suitable for the random-field modeling of mammograms. In the limiting case the family of probability functions approaches a normal distribution. Generalizations are given that suggest possible extensions to other types of digitized image.

© 1999 Optical Society of America

OCIS Codes
(100.2980) Image processing : Image enhancement
(100.7410) Image processing : Wavelets

History
Original Manuscript: October 31, 1997
Revised Manuscript: May 29, 1998
Manuscript Accepted: July 16, 1998
Published: January 1, 1999

Citation
John J. Heine, Stanley R. Deans, and Laurence P. Clarke, "Multiresolution probability analysis of random fields," J. Opt. Soc. Am. A 16, 6-16 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-1-6


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Heine, S. R. Deans, D. K. Cullers, R. Stauduhar, L. P. Clarke, “Multiresolution statistical analysis of high-resolution digital mammograms,” IEEE Trans. Med. Imaging 16, 503–515 (1997). [CrossRef] [PubMed]
  2. J. J. Heine, S. R. Deans, D. K. Cullers, R. Stauduhar, L. P. Clarke, “Multiresolution probability analysis of gray-scaled images,” J. Opt. Soc. Am. A 15, 1048–1058 (1998). [CrossRef]
  3. P. F. Judy, “Detection of clusters of simulated calcifications in lumpy noise backgrounds,” in Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 39–46 (1996). [CrossRef]
  4. K. Doi, M. L. Giger, R. M. Nishikawa, K. R. Hoffmann, H. MacMahon, R. A. Schmidt, K.-G. Chura, “Digital radiography,” Acta Radiol. 34, 426–439 (1993). [CrossRef] [PubMed]
  5. W. Qian, L. P. Clarke, H.-D. Li, R. Clark, M. L. Silbiger, “Digital mammography: M-channel quadrature mirror filters (QMF’s) for microcalcification extraction,” Comput. Med. Imag. Graph. 18, 301–314 (1994). [CrossRef]
  6. W. Qian, M. Kallergi, L. P. Clarke, H.-D. Li, P. Venugopal, D. Song, R. A. Clark, “Tree structured wavelet segmentation of microcalcifications in digital mammography,” Med. Phys. 22, 1247–1254 (1995). [CrossRef] [PubMed]
  7. L. Valatx, I. E. Magnin, A. Bremond, “Automatic microcalcification and opacities detection in digitized mammograms using a multiscale approach,” in Digital Mammography, A. G. Gale, S. M. Astley, D. R. Dance, A. Y. Cairns, eds. (Elsevier, Amsterdam, 1994).
  8. R. N. Strickland, H. I. Hann, “Wavelet transforms for detecting microcalcifications in mammograms,” IEEE Trans. Med. Imaging 15, 218–229 (1996). [CrossRef] [PubMed]
  9. R. A. Devore, B. Lucier, Z. Yang, “Feature extraction in digital mammography,” in Wavelets in Medicine and Biology, A. Aldroubi, M. Unser, eds. (CRC Press, Boca Raton, Fla., 1996), pp. 145–161.
  10. A. F. Laine, S. Schuler, J. Fan, W. Huda, “Mammographic feature enhancement by multiscale analysis,” IEEE Trans. Med. Imaging 13, 725–740 (1994). [CrossRef] [PubMed]
  11. J. Fan, A. Laine, “Multiscale contrast enhancement and denoising in digital radiographs,” in Wavelets in Medicine and Biology, A. Aldroubi, M. Unser, eds. (CRC Press, Boca Raton, Fla., 1996), pp. 163–189.
  12. C. E. Priebe, J. L. Solka, R. A. Lorey, G. W. Rogers, W. L. Poston, M. Kallergi, W. Qian, L. P. Clarke, R. A. Clark, “The application of fractal analysis to mammographic tissue classification,” Cancer Lett. 77, 183–189 (1994). [CrossRef] [PubMed]
  13. P. Caligiuri, M. L. Giger, M. Favus, “Multifractal radiographic analysis of osteoporosis,” Med. Phys. 21, 503–508 (1994). [CrossRef] [PubMed]
  14. F. Lefebvre, H. Benali, R. Gilles, E. Kahn, R. Di Paola, “A fractal approach to the segmentation of microcalcifications in digital mammograms,” Med. Phys. 22, 381–390 (1995). [CrossRef] [PubMed]
  15. V. Velanovich, “Fractal analysis of mammographic lesions: a feasibility study quantifying the difference between benign and malignant masses,” Am. J. Med. Sci. 311, 211–214 (1996). [CrossRef] [PubMed]
  16. T. Peli, “Multiscale fractal theory and object characterization,” J. Opt. Soc. Am. A 7, 1101–1112 (1990). [CrossRef]
  17. Q. Huang, J. R. Lorch, R. C. Dubes, “Can the fractal dimension of images be measured?” Pattern Recogn. 27, 339–349 (1994). [CrossRef]
  18. J. F. Veenland, J. L. Grashuis, F. Van der Meer, A. L. D. Beckers, E. S. Gelsema, “Estimation of fractal dimension in radiographs,” Med. Phys. 23, 585–594 (1996). [CrossRef] [PubMed]
  19. J. J. Heine, S. R. Deans, R. P. Velthuizen, L. P. Clarke, “On the statistical nature of mammograms,” Med. Phys.25, (to be published).
  20. P. Kube, A. Pentland, “On the imaging of fractal surfaces,” IEEE Trans. Pattern. Anal. Mach. Intell. 10, 704–707 (1988). [CrossRef]
  21. M. Schroeder, Fractals, Chaos, Power Laws (Freeman, New York, 1991).
  22. M. J. Buckingham, Noise in Electronic Devices and Systems (Wiley, New York, 1983), pp. 152–175.
  23. D. I. Barnea, H. F. Silverman, “A class of algorithms for fast digital image registration,” IEEE Trans. Comput. C-21, 179–186 (1972). [CrossRef]
  24. D. L. Ruderman, W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994). [CrossRef] [PubMed]
  25. I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1992).
  26. S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern. Anal. Mach. Intell. 11, 674–693 (1989). [CrossRef]
  27. M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. Image Process. 1, 205–220 (1992). [CrossRef] [PubMed]
  28. K. C. Chou, S. Golden, A. S. Willsky, “Modeling and estimation of multiscale stochastic processes,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing ’91 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1991), Vol. 3D, pp. 1709–1712.
  29. V. V. Digalakis, K. C. Chou, “Maximum likelihood identification of multiscale stochastic models using the wavelet transform and the EM algorithm,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing ’93 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1993), Vol. IV, pp. 93–96.
  30. J.-L. Chen, A. Kundu, “Rotation and gray scale transform invariant texture identification using wavelet decomposition and hidden Markov model,” IEEE Trans. Pattern. Anal. Mach. Intell. 16, 208–214 (1994). [CrossRef]
  31. G. Wornell, Signal Processing with Fractals: A Wavelet-Based Approach (Prentice-Hall, Englewood Cliffs, N.J., 1996).
  32. I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed. (Academic, Boston, 1994), Eqs. 3.737 1, 3.771 2, and 3.754 2.
  33. B. Gold, G. O. Young, “The response of linear systems to non-Gaussian noise,” IRE Trans. Inf. Theory PGIT 2–4, 63–67 (1953/1954).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited