OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 10 — Oct. 1, 1999
  • pp: 2321–2333

Relationship between acuity for gratings and for tumbling-E letters in peripheral vision

Roger S. Anderson and Larry N. Thibos  »View Author Affiliations


JOSA A, Vol. 16, Issue 10, pp. 2321-2333 (1999)
http://dx.doi.org/10.1364/JOSAA.16.002321


View Full Text Article

Enhanced HTML    Acrobat PDF (490 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Earlier studies have reported that grating resolution is sampling-limited in peripheral vision but that letter acuity is generally poorer than grating acuity. These results suggest that peripheral resolution of objects with rich Fourier spectra may be limited by some factor other than neural sampling. To examine this suggestion we formulated and tested the hypothesis that letter acuity in the periphery is sampling-limited, just as it is for extended and truncated gratings. We tested this hypothesis with improved methodology to avoid the confounding factors of target similarity, alphabet size, individual variation, peripheral refractive error, and stimulus size. Acuity was measured for an orientation-discrimination task (horizontal versus vertical) for a three-bar resolution target and for a block-E letter in which all strokes have the same length. We confirmed previous reports in the literature that acuity for these targets is worse than for extended sinusoidal gratings. To account for these results quantitatively, we used difference-spectrum analysis to identify those frequency components of the targets that might form a basis for performing the visual discrimination task. We find that discrimination performance for the three-bar targets and the block-E letters can be accounted for by a sampling-limited model, provided that the limited number of cycles that are present in the characteristic frequency of the stimulus is taken into account. Quantitative differences in acuity for discriminating other letter pairs (e.g., right versus left letters E or characters with short central strokes) could not be attributed to undersampling of either the characteristic frequency or the frequency of maximum energy in the difference spectrum. These results suggest additional tests of the sampling theory of visual resolution, which are the subject of a companion paper [J. Opt. Soc. Am. A. 16, 2334–2342 (1999)].

© 1999 Optical Society of America

OCIS Codes
(330.1070) Vision, color, and visual optics : Vision - acuity
(330.1880) Vision, color, and visual optics : Detection
(330.5510) Vision, color, and visual optics : Psychophysics

History
Original Manuscript: August 3, 1998
Revised Manuscript: May 24, 1999
Manuscript Accepted: May 24, 1999
Published: October 1, 1999

Citation
Roger S. Anderson and Larry N. Thibos, "Relationship between acuity for gratings and for tumbling-E letters in peripheral vision," J. Opt. Soc. Am. A 16, 2321-2333 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-10-2321


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. J. Braddick, “Is spatial phase degraded in peripheral vision and visual pathology?” Doc. Ophthal. Proc. Ser. 30, 255–262 (1981).
  2. J. L. Kerr, “Visual resolution in the periphery,” Percept. Psychophys. 9, 375–378 (1971). [CrossRef]
  3. J. Merchant, “Sampling theory for the human visual sense,” J. Opt. Soc. Am. 55, 1291–1296 (1965). [CrossRef]
  4. C. M. E. Stephenson, A. J. Knapp, O. J. Braddick, “Discrimination of spatial phase shows a qualitative difference between foveal and peripheral processing,” Vision Res. 31, 1315–1326 (1991). [CrossRef] [PubMed]
  5. S. T. L. Chung, G. E. Legge, “Spatial-frequency depen-dence of letter recognition in central and peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, S639 (1997).
  6. A. P. Ginsburg, “Specifying relevant spatial information for image evaluation and display designs: an explanation of how we see certain objects,” Proc. Soc. Inf. Displ. 21, 219–227 (1980).
  7. F. Thorn, F. Schwartz, “Effects of dioptric blur on Snellen and grating acuity,” Optom. Vision Sci. 67, 3–7 (1990). [CrossRef]
  8. K. R. Alexander, W. Xie, D. J. Derlacki, “Spatial-frequency characteristics of letter identification,” J. Opt. Soc. Am. A 11, 2373–2382 (1994). [CrossRef]
  9. K. R. Alexander, W. Xie, D. J. Derlacki, “Visual acuity and contrast sensitivity for individual Sloan letters,” Vision Res. 37, 813–819 (1997). [CrossRef] [PubMed]
  10. T. E. Cohn, D. J. Lasley, “Visual sensitivity,” Annu. Rev. Psychol. 37, 495–521 (1986). [CrossRef] [PubMed]
  11. J. Pokorny, C. H. Graham, R. N. Lanson, “The effect of wavelength on foveal grating acuity,” J. Opt. Soc. Am. 58, 1410–1414 (1968). [CrossRef] [PubMed]
  12. R. S. Anderson, D. W. Evans, L. N. Thibos, “Effect of window size on detection acuity and resolution acuity for sinusoidal gratings in central and peripheral vision,” J. Opt. Soc. Am. A 13, 697–706 (1996). [CrossRef]
  13. E. Ludvigh, “Extrafoveal visual acuity as measured with Snellen letters,” Am. J. Ophthalmol. 24, 303–310 (1941).
  14. G. L. Kandel, P. E. Grattan, H. E. Bedell, “Monocular fixation and acuity in amblyopic and normal eyes,” Am. J. Optom. Physiol. Opt. 54, 598–608 (1977). [CrossRef] [PubMed]
  15. V. Virsu, R. Nasanen, K. Osmoviita, “Cortical magnification and peripheral vision,” J. Opt. Soc. Am. A 4, 1568–1578 (1987). [CrossRef] [PubMed]
  16. H. Strasburger, L. O. Harvey, I. Rentschler, “Contrast thresholds for identification of numeric characters in direct and eccentric view,” Percept. Psychophys. 49, 495–508 (1991). [CrossRef] [PubMed]
  17. K. E. Higgins, A. Arditi, K. Knoblauch, “Detection and identification or mirror-image letter pairs in central and peripheral vision,” Vision Res. 36, 331–337 (1996). [CrossRef] [PubMed]
  18. R. S. Anderson, “The selective effect of optical defocus on detection and resolution acuity in peripheral vision,” Curr. Eye Res. 15, 351–353 (1996). [CrossRef] [PubMed]
  19. Y. Wang, L. N. Thibos, A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2143 (1997).
  20. D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985). [CrossRef] [PubMed]
  21. N. J. Coletta, D. R. Williams, “Psychophysical estimate of extrafoveal cone spacing,” J. Opt. Soc. Am. A 4, 1503–1513 (1987). [CrossRef] [PubMed]
  22. R. A. Smith, R. A. Cass, “Aliasing in the parafovea with incoherent light,” J. Opt. Soc. Am. A 4, 1530–1534 (1987). [CrossRef] [PubMed]
  23. D. R. Williams, N. J. Coletta, “Cone spacing and the visual resolution limit,” J. Opt. Soc. Am. A 4, 1514–1523 (1987). [CrossRef] [PubMed]
  24. L. N. Thibos, F. E. Cheney, D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524–1529 (1987). [CrossRef] [PubMed]
  25. L. N. Thibos, D. J. Walsh, F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27, 2193–2197 (1987). [CrossRef] [PubMed]
  26. S. J. Anderson, R. F. Hess, “Post-receptoral undersampling in normal human peripheral vision,” Vision Res. 30, 1507–1515 (1990). [CrossRef] [PubMed]
  27. N. J. Coletta, D. R. Williams, C. L. M. Tiana, “Consequences of spatial sampling for human motion perception,” Vision Res. 30, 1631–1648 (1990). [CrossRef] [PubMed]
  28. S. J. Anderson, K. T. Mullen, R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli—limits imposed by optical and retinal factors,” J. Physiol. (London) 442, 47–64 (1991).
  29. S. J. Galvin, D. R. Williams, “No aliasing at edges in normal viewing,” Vision Res. 32, 2251–2259 (1992). [CrossRef] [PubMed]
  30. N. J. Coletta, P. Segu, C. L. M. Tiana, “An oblique effect in parafoveal motion perception,” Vision Res. 33, 2747–2756 (1993). [CrossRef] [PubMed]
  31. L. N. Thibos, A. Bradley, “New methods for discriminating neural and optical losses of vision,” Optom. Vision Sci. 70, 279–287 (1993). [CrossRef]
  32. M. O. Wilkinson, “Neural basis of photopic and scotopic visual acuity,” Ph.D. dissertation (Indiana University, Bloomington, Ind., 1994).
  33. R. S. Anderson, P. Detkova, C. O'Brien, “Effect of temporal frequency and contrast on peripheral grating resolution,” Curr. Eye Res. 14, 1031–1033 (1995). [CrossRef] [PubMed]
  34. P. Artal, A. M. Derrington, E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995). [CrossRef] [PubMed]
  35. L. N. Thibos, D. L. Still, A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249–258 (1996). [CrossRef] [PubMed]
  36. Y. Z. Wang, L. N. Thibos, A. Bradley, “Undersampling produces nonveridical motion perception, but not necessarily motion reversal, in peripheral vision,” Vision Res. 36, 1737–1744 (1996). [CrossRef] [PubMed]
  37. Y. Z. Wang, A. Bradley, L. N. Thibos, “Interaction between sub- and supra-Nyquist spatial frequencies in peripheral vision,” Vision Res. 37, 2545–2552 (1997). [CrossRef] [PubMed]
  38. Y. Wang, A. Bradley, L. N. Thibos, “Aliased frequencies enable the discrimination of compound gratings in peripheral vision,” Vision Res. 37, 283–290 (1997). [CrossRef] [PubMed]
  39. L. N. Thibos, “Acuity perimetry and the sampling theory of visual resolution,” Optom. Vision Sci. 75, 399–406 (1997). [CrossRef]
  40. R. S. Anderson, “Spatial and retinal factors limiting acuity across the visual field,” Ph.D. dissertation (Indiana University, Bloomington, Ind., 1994).
  41. R. S. Anderson, L. N. Thibos, “Sampling limits and critical bandwidth for letter discrimination in peripheral vision,” J. Opt. Soc. Am. A 16, 2334–2342 (1999). [CrossRef]
  42. S. J. Anderson, R. F. Hess, “Spatial undersampling causes both motion cessation and reversal phenomena in human peripheral vision,” Invest. Ophthalmol. Visual Sci. 31, 495 (1990).
  43. N. A. P. Brown, J. M. Sparrow, G. A. Shun-Shin, S. L. Franklin, “The acuityscope: a resolution test target projection ophthalmoscope,” Int. Ophthalmol. 15, 139–142 (1991). [CrossRef] [PubMed]
  44. I. Bailey, J. Lovie, “New design principles for visual acuity letter charts,” Am. J. Optom. Physiol. Opt. 53, 740–745 (1976). [CrossRef] [PubMed]
  45. J. Rovamo, V. Virsu, P. Laurinen, L. Hyvarinen, “Resolution of gratings oriented along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666–670 (1982).
  46. L. A. Temme, L. Malcus, W. K. Noell, “Peripheral visual field is radially organized,” Am. J. Optom. Physiol. Opt. 62, 545–554 (1985). [CrossRef] [PubMed]
  47. R. S. Anderson, M. O. Wilkinson, L. N. Thibos, “Psychophysical localization of the human visual streak,” Optom. Vision Sci. 69, 171–174 (1992). [CrossRef]
  48. G. Westheimer, “Scaling of visual acuity,” Arch. Ophthalmol. (Chicago) 97, 327–330 (1979). [CrossRef]
  49. D. M. Levi, S. A. Klein, A. P. Aitsebaomo, “Vernier acuity, crowding and cortical magnification,” Vision Res. 25, 963–977 (1985). [CrossRef] [PubMed]
  50. F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).
  51. V. M. Bondarko, M. V. Danilova, “What spatial frequency do we use to detect the orientation of a Landolt C?” Vision Res. 37, 2153–2156 (1997). [CrossRef] [PubMed]
  52. J. Pokorny, “The effect of target area on grating acuity,” Vision Res. 8, 543–554 (1968). [CrossRef] [PubMed]
  53. R. F. Hess, S. C. Dakin, N. Kapoor, “Foveal contour interaction: physics or physiology?” Invest. Ophthalmol. Visual Sci. 40, S809 (1999).
  54. C. F. Stromeyer, S. Klein, “Spatial frequency channels in human vision as asymmetric (edge) mechanisms,” Vision Res. 14, 1409–1420 (1974). [CrossRef] [PubMed]
  55. D. M. Levi, S. A. Klein, H. Wang, “Amblyopic and peripheral vernier acuity: a test-pedestal approach,” Vision Res. 34, 3265–3292 (1994). [CrossRef] [PubMed]
  56. R. Hilz, C. R. Cavonius, “Functional organization of the peripheral retina: sensitivity to periodic stimuli,” Vision Res. 14, 1333–1338 (1974). [CrossRef] [PubMed]
  57. J. J. Koenderink, A. J. van Doorn, “Visual detection of spatial contrast; influence of location in the visual field, target extent and illuminance level,” Biol. Cybern. 30, 157–167 (1978). [CrossRef] [PubMed]
  58. J. Rovamo, V. Virsu, R. Nasanen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature (London) 271, 54–56 (1978). [CrossRef]
  59. P. J. Bennett, M. S. Banks, “Sensitivity loss in odd-symmetric mechanisms and phase anomalies in peripheral vision,” Nature (London) 326, 873–876 (1987). [CrossRef]
  60. R. Hilz, I. Rentschler, H. Brettel, “Insensitivity of peripheral vision to spatial phase,” Exp. Brain Res. 43, 111–114 (1981). [CrossRef] [PubMed]
  61. R. F. Hess, J. McCarthy, “Topological disorder in peripheral vision,” Visual Neurosci. 11, 1033–1036 (1994). [CrossRef]
  62. R. F. Hess, D. Field, “Is the increased spatial uncertainty in the normal periphery due to spatial undersampling or uncalibrated disarray?” Vision Res. 33, 2663–2670 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited