OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 10 — Oct. 1, 1999
  • pp: 2453–2458

Mode expansion for Gaussian Schell-model beams with partially correlated modes

Baida Lü and Bin Zhang  »View Author Affiliations


JOSA A, Vol. 16, Issue 10, pp. 2453-2458 (1999)
http://dx.doi.org/10.1364/JOSAA.16.002453


View Full Text Article

Enhanced HTML    Acrobat PDF (140 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Analytical expressions for the mode expansion for Gaussian Schell-model (GSM) beams with partially correlated modes are derived on the basis of the partial-coherence theory and the M2-factor concept. It is shown that our results have general characteristics and are valid for partially coherent laser light, which can be expressed as GSM beams. Moreover, owing to the cross correlation of modes, some modifications to the previous theory have to be made.

© 1999 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.4070) Coherence and statistical optics : Modes
(140.3430) Lasers and laser optics : Laser theory

History
Original Manuscript: October 12, 1998
Revised Manuscript: April 9, 1999
Manuscript Accepted: April 9, 1999
Published: October 1, 1999

Citation
Baida Lü and Bin Zhang, "Mode expansion for Gaussian Schell-model beams with partially correlated modes," J. Opt. Soc. Am. A 16, 2453-2458 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-10-2453


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990). [CrossRef]
  2. A. E. Siegman, “How to (maybe) measure laser beam quality,” in DPSS Lasers: Application and Issues, M. W. Dowley, ed., Vol. 17 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), 184–199.
  3. H. Weber, ed., Special issue on laser beam quality, Opt. Quantum Electron.24, 861–1135 (1992). [CrossRef]
  4. K. M. Du, G. Herziger, P. Loosen, F. Rühl, “Coherence and intensity moments of laser light,” Opt. Quantum Electron. 24, 1081–1093 (1992). [CrossRef]
  5. K. M. Du, G. Herziger, P. Loosen, F. Rühl, “Computation of the statistical properties of laser light,” Opt. Quantum Electron. 24, 1095–1108 (1992). [CrossRef]
  6. K. M. Du, G. Herziger, P. Loosen, F. Rühl, “Measurement of the mode coherence coefficients,” Opt. Quantum Electron. 24, 1119–1127 (1992). [CrossRef]
  7. K. M. Du, “Kohörenz, Polarization und Fluktuation von Laserstrahlung,” Ph.D. dissertation (Verlag der Augustinus-Buchhandlung, Aachen, Germany1992).
  8. H. Weber, “Propagation of higher-order intensity moments in quadratic-index media,” Opt. Quantum Electron. 24, 1027–1049 (1992). [CrossRef]
  9. A. Starikov, E. Wolf, “Coherent-mode representation of Gaussian Schell-model sources and their radiation fields,” J. Opt. Soc. Am. 72, 923–928 (1982). [CrossRef]
  10. A. T. Friberg, R. J. Sudol, “Propagation parameters of Gaussian Schell-model beams,” Opt. Commun. 41, 383–387 (1982). [CrossRef]
  11. J. Turunen, A. T. Friberg, “Matrix representation of Gaussian Schell-model beams in optical systems,” Opt. Laser Technol. 18, 259–267 (1986). [CrossRef]
  12. A. T. Friberg, J. Turunen, “Imaging of Gaussian Schell-model sources,” J. Opt. Soc. Am. A 5, 713–719 (1988). [CrossRef]
  13. F. Gori, “Collett–Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980). [CrossRef]
  14. R. Gase, “The multimode laser radiation as a Gaussian Schell-model beams,” J. Mod. Opt. 38, 1107–1115 (1991). [CrossRef]
  15. B. Lü, B. Zhang, B. Cai, C. Yang, “A simple method for estimating the number of effectively oscillating modes and weighting factors of mixed-mode laser beams,” Opt. Commun. 101, 49–52 (1993). [CrossRef]
  16. B. Zhang, B. Lü, “Transformation of Gaussian Schell-model beams and their coherent-mode representation,” J. Opt. (Paris) 27, 99–103 (1996). [CrossRef]
  17. L. Mandel, E. Wolf, “Spectral coherence and the concept of cross-spectral purity,” J. Opt. Soc. Am. 66, 529–535 (1976). [CrossRef]
  18. T. Shirai, T. Asakura, “Spatial coherence of light generated from a partially coherent source and its control using a source filter,” Optik (Stuttgart) 94, 1–17 (1993).
  19. L. Mandel, E. Wolf, eds., Coherence and Quantum Optics (Plenum, New York, 1973).
  20. H. Gamo, “Matrix Treatment of Partial Coherence,” Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1964), Vol. III, pp. 187–247.
  21. A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of Integral Transforms (McGraw-Hill, New York, 1954).
  22. I. S. Gradshtein, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980).
  23. F. Gori, “Flattened Gaussian beams,” Opt. Commun. 107, 335–341 (1994). [CrossRef]
  24. L. W. Caperson, A. A. Tovar, “Hermite-sinusoidal-Gaussian beams in complex optical systems,” J. Opt. Soc. Am. A 15, 954–961 (1998). [CrossRef]
  25. B. Lü, B. Zhang, S. Luo, “Far-field intensity distribution, M2 factor, and propagation of flattened Gaussian beams,” Appl. Opt. 38, 4581–4584 (1999). [CrossRef]
  26. B. Lü, B. Zhang, H. Ma, “Beam-propagation factor and mode-coherence coefficients of hyperbolic-cosine–Gaussian beams,” Opt. Lett. 24, 640–642 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited