OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 10 — Oct. 1, 1999
  • pp: 2459–2464

Statistical characterization of ray propagation in a random lattice

Stefano Marano, Francesco Palmieri, and Giorgio Franceschetti  »View Author Affiliations


JOSA A, Vol. 16, Issue 10, pp. 2459-2464 (1999)
http://dx.doi.org/10.1364/JOSAA.16.002459


View Full Text Article

Enhanced HTML    Acrobat PDF (179 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We address the problem of optical propagation in random lattices. This can be relevant in characterizing, among other phenomena, the urban shortwave channels such as those involved in cellular communications. We consider an ensemble of optical rays, generated by an isotropic source, that propagates in a two-dimensional disordered medium whose characteristic parameter is the density of inner square reflectors. The statistical characterization of the propagation mechanism is our aim. In a previous work [FranceschettiG., IEEE Trans. Antennas Propag. 47(7) (1999)], a quite similar scenario has been considered, with a ray impinging on a semi-infinite layer of reflectors and with a Markov chain formulation. We report the extension of such an approach to the internal-source scenario and point out how the independence assumption of the ray characterization may not lead to particularly accurate results. Therefore we propose a different approach, based solely on the geometry of the random lattice. We exploit the intuition that the relevant geometry in such a propagation problem should be based on the city-block distance rather than on the usual Euclidean distance. This allows us to obtain a simple analytical solution in the form of a parametric family of distribution functions. This basic result is validated by means of computer simulations.

© 1999 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(080.2720) Geometric optics : Mathematical methods (general)
(350.5500) Other areas of optics : Propagation

History
Original Manuscript: December 1, 1998
Revised Manuscript: March 22, 1999
Manuscript Accepted: March 22, 1999
Published: October 1, 1999

Citation
Stefano Marano, Francesco Palmieri, and Giorgio Franceschetti, "Statistical characterization of ray propagation in a random lattice," J. Opt. Soc. Am. A 16, 2459-2464 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-10-2459


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. C. Yu, D. Morton, C. Stumpf, R. G. White, J. E. Wilkes, M. Ulema, “Low-tier wireless local loop radio systems—Part 1: Introduction,” IEEE Commun. Mag. 35, 84–92 (March1997);“Part 2: Comparison of systems,” IEEE Commun. Mag. 35, 94–98 (March1997). [CrossRef]
  2. L. Bernstein, C. M. Yuas, “Managing the last mile,” IEEE Commun. Mag. 35, 72–76 (October1997). [CrossRef]
  3. S. Dehghan, R. Steel, “Small cell city,” IEEE Commun. Mag.52–59 (August1997).
  4. E. Damosso, F. Tallone, “Coperture radio per ambienti microcellulari urbani: il caso DECT,” Not. Tec. Telecom Ital. 6, 67–78 (1997).
  5. H. Suzuki, “A statistical model of urban radio propagation,” IEEE Trans. Commun. C-25, 673–680 (1977). [CrossRef]
  6. G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. VT-21, 1–9 (1972).
  7. A. J. Coulson, A. G. Williamson, R. G. Vaughan, “A statistical basis for lognormal shadowing effects in multipath fading channels,” IEEE Trans. Commun. 46, 494–502 (1998). [CrossRef]
  8. H. Hashemi, “Impulse response modeling of indoor radio propagation channels,” IEEE J. Sel. Areas Commun. 11, 967–978 (1993). [CrossRef]
  9. L. Talbi, G. Y. Delisle, “Experimental characterization of EHF multipath indoor radio channels,” IEEE J. Sel. Areas Commun. 14, 431–439 (1996). [CrossRef]
  10. L. Dossi, G. Tartara, F. Tallone, “Statistical analysis of measured impulse response functions of 2.0 GHz indoor radio channels,” IEEE J. Sel. Areas Commun. 14, 405–410 (1996). [CrossRef]
  11. G. E. Corazza, V. Degli Espositi, M. Frullone, G. Riva, “A characterization of indoor space and frequency diversity by ray-tracing modeling,” IEEE J. Sel. Areas Commun. 14, 411–419 (1996). [CrossRef]
  12. M. F. Cátedra, J. Pérez, F. Saez de Adana, O. Gutierrez, “Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios,” IEEE Antennas Propag. Mag. 40(No. 2), 15–27 (1998). [CrossRef]
  13. G. Liang, H. L. Bertoni, “A new approach to 3-D ray tracing for propagation prediction in cities,” IEEE Trans. Antennas Propag. 46, 853–863 (1998). [CrossRef]
  14. C.-Fa Yang, B.-Cheng Wu, C.-Jyi Ko, “A ray-tracing method for modeling indoor wave propagation and penetration,” IEEE Trans. Antennas Propag. 46, 907–919 (1998). [CrossRef]
  15. R. Mazar, A. Bronshtein, I.-Tai Lu, “Theoretical analysis of UHF propagation in a city street modeled as a random multislit waveguide,” IEEE Trans. Antennas Propag. 46, 864–871 (1998). [CrossRef]
  16. C. C. Constantinou, L. C. Ong, “Urban radiowave propagation: a 3-D path-integral wave analysis,” IEEE Trans. Antennas Propag. 46, 211–217 (1998). [CrossRef]
  17. G. Franceschetti, S. Marano, F. Palmieri, “Propagation without wave equation. Towards an urban area model,” IEEE Trans. Antennas Propag. (to be published).
  18. G. Franceschetti, S. Marano, F. Palmieri, “Studio della propagazione in un mezzo percolativo come nuovo modello di tessuto urbano” (Centro Studi e Laboratori Telecomunicazioni, Torino, Italy, 1998). Distributed in electronic form (CD) within Alta Freq. 10(4) (1998).
  19. D. Stauffer, Introduction to Percolation Theory (Taylor & Francis, London, 1985).
  20. R. Karlin, H. M. Taylor, A First Course in Stochastic Processes, 2nd ed. (Academic, San Diego, Calif., 1975).
  21. S. Marano, F. Palmieri, G. Franceschetti, “Optical propagation in a regular lattice: a Martingale based approach,” internal report (Department of Electrical Engineering and Communications, University of Naples, Naples, Italy, 1998).
  22. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd ed. (McGraw-Hill, New York, 1984).
  23. I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980).
  24. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).
  25. J. Spaner, K. B. Oldham, An Atlas of Functions (Springer-Verlag, Berlin, 1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited