OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 10 — Oct. 1, 1999
  • pp: 2488–2493

Intensity-moments characterization of general pulsed paraxial beams with the Wigner distribution function

Jun Yang and Dianyuan Fan  »View Author Affiliations


JOSA A, Vol. 16, Issue 10, pp. 2488-2493 (1999)
http://dx.doi.org/10.1364/JOSAA.16.002488


View Full Text Article

Acrobat PDF (126 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

On the basis of the space–time Wigner distribution function (STWDF), we use the matrix formalism to study the propagation laws for the intensity moments of quasi-monochromatic and polychromatic pulsed paraxial beams. The advantages of this approach are reviewed. Also, a least-squares fitting method for interpreting the physical meaning of the effective curvature matrix is described by means of the STWDF. Then the concept is extended to the higher-order situation, and what we believe is a novel technique for characterizing the beam phase is presented.

© 1999 Optical Society of America

OCIS Codes
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(050.1960) Diffraction and gratings : Diffraction theory
(070.2590) Fourier optics and signal processing : ABCD transforms
(320.5550) Ultrafast optics : Pulses
(350.5500) Other areas of optics : Propagation

Citation
Jun Yang and Dianyuan Fan, "Intensity-moments characterization of general pulsed paraxial beams with the Wigner distribution function," J. Opt. Soc. Am. A 16, 2488-2493 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-10-2488


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979).
  2. R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Partially coherent beams and a generalized ABCD-law,” Opt. Commun. 65, 322–328 (1988).
  3. S. Lavi, R. Prochaska, and E. Keren, “Generalized beam parameters and transformation laws for partially coherent light,” Appl. Opt. 27, 3696–3703 (1988).
  4. J. Serna, R. Martínez-Herrero, and P. M. Mejías, “Parametric characterization of general partially coherent beams propagating through ABCD optical systems,” J. Opt. Soc. Am. A 8, 1094–1098 (1991).
  5. M. J. Bastiaans, “Propagation laws for the second-order moments of the Wigner distribution function in first-order optical systems,” Optik (Stuttgart) 82, 173–181 (1989).
  6. M. J. Bastiaans, “Second-order moments of the Wigner distribution function in first-order optical systems,” Optik (Stuttgart) 88, 163–168 (1991).
  7. D. Onciul, “Invariance properties of general astigmatic beams through first-order optical systems,” J. Opt. Soc. Am. A 10, 295–298 (1993).
  8. D. Dragoman, “Higher-order moments of the Wigner distribution function in first-order optical systems,” J. Opt. Soc. Am. A 11, 2643–2646 (1994).
  9. R. Martínez-Herrero, P. M. Mejías, M. Sanchez, and J. L. H. Neira, “Third- and fourth-order parametric characterization of partially coherent beams propagating through ABCD optical systems,” Opt. Quantum Electron. 24, S1021–S1026 (1992).
  10. R. Martínez-Herrero and P. M. Mejías, “On the fourth-order spatial characterization of laser beams: new invariant parameter through ABCD systems,” Opt. Commun. 140, 57–60 (1997).
  11. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 2–14 (1990).
  12. P. A. Bélanger, “Beam propagation and the ABCD ray matrices,” Opt. Lett. 16, 196–198 (1991).
  13. A. E. Siegman, “Defining the effective radius of curvature for a nonideal optical beam,” IEEE J. Quantum Electron. 27, 1146–1148 (1991).
  14. M. A. Porras, J. Alda, and E. Bernabeu, “Complex beam parameter and ABCD law for non-Gaussian and nonspherical light beams,” Appl. Opt. 31, 6389–6402 (1992).
  15. H. Weber, “Propagation of higher-order intensity moments in quadratic-index media,” Opt. Quantum Electron. 24, S1027–S1049 (1992).
  16. Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Transformation of pulsed nonideal beams in a four-dimension domain,” Opt. Lett. 18, 669–671 (1993).
  17. P. M. Mejías and R. Martínez-Herrero, “Time-resolved spatial parametric characterization of pulsed light beams,” Opt. Lett. 20, 660–662 (1995).
  18. Q. Cao and X. Deng, “Spatial parametric characterization of general polychromatic light beams,” Opt. Commun. 142, 135–145 (1997).
  19. E. Wolf, “New theory of radiative energy transfer in free electromagnetic fields,” Phys. Rev. D 13, 869–886 (1976).
  20. E. C. G. Sudarshan, “Quantum theory of radiative transfer,” Phys. Rev. A 23, 2802–2809 (1981).
  21. K. Yoshimori and K. Itoh, “Interferometry and radiometry,” J. Opt. Soc. Am. A 14, 3379–3387 (1997); “On the generalized radiance function for a polychromatic field,” J. Opt. Soc. Am. A 15, 2786–2787 (1998).
  22. A. Walther, “Radiometry and coherence,” J. Opt. Soc. Am. 58, 1256–1259 (1968).
  23. M. J. Bastiaans, “Transport equations for the Wigner distribution function in an inhomogeneous and dispersive medium,” Opt. Acta 26, 1333–1344 (1979).
  24. J. Paye and A. Migus, “Space–time Wigner functions and their application to the analysis of a pulse shaper,” J. Opt. Soc. Am. B 12, 1480–1490 (1995).
  25. A. G. Kostenbauder, “Ray-pulse matrices: a rational treatment for dispersive optical systems,” IEEE J. Quantum Electron. 26, 1148–1157 (1990).
  26. Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Spatial–temporal coupling in a grating-pair pulse compression system analysed by matrix optics,” Opt. Quantum Electron. 27, 679–692 (1995).
  27. K. E. Oughstun and H. Xiao, “Failure of the quasimonochromatic approximation for ultrashort pulse propagation in a dispersive, attenuative medium,” Phys. Rev. Lett. 78, 642–645 (1997).
  28. G. A. Deschamps, “Ray techniques in electromagnetics,” Proc. IEEE 60, 1022–1035 (1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited