OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 16, Iss. 12 — Dec. 1, 1999
  • pp: 2817–2824

Apparent speed and speed sensitivity during adaptation to motion

Peter J. Bex, Samantha Bedingham, and Stephen T. Hammett  »View Author Affiliations

JOSA A, Vol. 16, Issue 12, pp. 2817-2824 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (168 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Adaptation, a change in response to a sustained stimulus, can be demonstrated in motion perception by velocity aftereffects—changes in the apparent speed of a moving pattern following adaptation. We measured changes in the apparent speed of sinusoidal gratings drifting at 4 or 7.5 deg/s during 30 s of adaptation followed by 30 s of recovery. The apparent speed of the patterns fell to approximately half the unadapted apparent speed, and the time constants of adaptation were much faster (5 s) than for recovery (22 s). Part of the loss of apparent speed (approximately 12%) was related to a loss of apparent contrast with adaptation. Sensitivity to speed increments and speed decrements increased during adaptation and was well described by a Weber fraction based on apparent speed. The results suggest that adaptation to motion, like light adaptation, may serve to improve an observer’s sensitivity to the prevailing environment.

© 1999 Optical Society of America

OCIS Codes
(330.4150) Vision, color, and visual optics : Motion detection
(330.5020) Vision, color, and visual optics : Perception psychology
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6790) Vision, color, and visual optics : Temporal discrimination
(330.7310) Vision, color, and visual optics : Vision
(330.7320) Vision, color, and visual optics : Vision adaptation

Original Manuscript: December 17, 1998
Revised Manuscript: May 3, 1999
Manuscript Accepted: May 3, 1999
Published: December 1, 1999

Peter J. Bex, Samantha Bedingham, and Stephen T. Hammett, "Apparent speed and speed sensitivity during adaptation to motion," J. Opt. Soc. Am. A 16, 2817-2824 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. J. Wade, “A selective history of the study of visual motion aftereffects,” Perception 23, 1111–1134 (1994). [CrossRef] [PubMed]
  2. G. Mather, F. A. J. Verstraten, S. M. Anstis, The Motion Aftereffect: A Modern Perspective (MIT Press, Cambridge, Mass., 1998).
  3. A. Wohlgemuth, “On the aftereffect of seen movement,” Br. J. Psychol. 1, 1–117 (1911).
  4. P. G. Thompson, “Velocity after-effects and the perception of movement,” Ph.D. thesis (University of Cambridge, Cambridge, UK, 1976).
  5. J. J. Gibson, “Adaptation with negative aftereffect,” Psychol. Rev. 44, 222–244 (1937). [CrossRef]
  6. A. G. Goldstein, “Judgements of visual velocity as a function of length of observation,” J. Exp. Psychol. 54, 457–461 (1959). [CrossRef]
  7. J. Rapoport, “Adaptation in the perception of rotary motion,” J. Exp. Psychol. 67, 263–267 (1964). [CrossRef] [PubMed]
  8. P. Thompson, “Velocity after-effects: the effects of adaptation to moving stimuli on the perception of subsequently seen moving stimuli,” Vision Res. 21, 337–345 (1981). [CrossRef] [PubMed]
  9. A. T. Smith, “Velocity coding: evidence from perceived velocity shifts,” Vision Res. 25, 1969–1976 (1985). [CrossRef] [PubMed]
  10. A. T. Smith, G. K. Edgar, “Antagonistic comparison of temporal frequency filter outputs as a basis for speed perception,” Vision Res. 34, 253–265 (1994). [CrossRef] [PubMed]
  11. R. Muller, M. W. Greenlee, “Effect of contrast and adaptation on the perception of the direction and speed of drifting gratings,” Vision Res. 34, 2071–2092 (1994). [CrossRef] [PubMed]
  12. C. W. G. Clifford, K. Langley, “Psychophysics of motion adaptation parallels insect electrophysiology,” Curr. Biol. 6, 1340–1342 (1996). [CrossRef] [PubMed]
  13. V. R. Carlson, “Adaptation in the perception of visual velocity,” J. Exp. Psychol. 64, 192–197 (1962). [CrossRef] [PubMed]
  14. T. R. Scott, A. E. Jordan, D. A. Powell, “Does the visual after-effect of motion add algebraically to objective motion of the test stimulus?” J. Exp. Psychol. 66, 500–505 (1963). [CrossRef] [PubMed]
  15. M. G. Harris, “Velocity specificity of the flicker to pattern sensitivity ratio in human vision,” Vision Res. 20, 687–691 (1980). [CrossRef] [PubMed]
  16. A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981). [CrossRef] [PubMed]
  17. P. Thompson, “Discrimination of moving gratings at and above detection threshold,” Vision Res. 23, 1533–1538 (1983). [CrossRef] [PubMed]
  18. B. Moulden, J. Renshaw, G. Mather, “Two channels for flicker in the human visual system,” Perception 13, 387–400 (1984). [CrossRef] [PubMed]
  19. S. T. Hammett, A. T. Smith, “Two temporal channels or three? A re-evaluation,” Vision Res. 32, 285–291 (1992). [CrossRef] [PubMed]
  20. A. B. Metha, K. T. Mullen, “Temporal mechanisms underlying flicker detection and identification for red–green and achromatic stimuli,” J. Opt. Soc. Am. A 13, 1967–1980 (1996). [CrossRef]
  21. R. E. Fredericksen, R. F. Hess, “Estimating multiple temporal mechanisms in human vision,” Vision Res. 38, 1023–1040 (1998). [CrossRef] [PubMed]
  22. M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984). [CrossRef] [PubMed]
  23. R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992). [CrossRef] [PubMed]
  24. M. Hershenson, “Thirty seconds of adaptation produce spiral aftereffects three days later,” Bull. Psychon. Soc. 23, 122–123 (1985). [CrossRef]
  25. M. M. Taylor, “Tracking the decay of the aftereffect of seen rotary movement,” Percept. Motor Skills 16, 119–129 (1963). [CrossRef]
  26. M. J. Keck, B. Pentz, “Recovery from adaptation to moving gratings,” Perception 6, 719–725 (1977). [CrossRef] [PubMed]
  27. M. Hershenson, “Duration, time constant, and decay of the linear motion aftereffect as a function of inspection duration,” Percept. Psychophys. 45, 251–257 (1989). [CrossRef] [PubMed]
  28. M. J. Keck, T. D. Palella, A. Pantle, “Motion aftereffect as a function of the contrast of sinusoidal gratings,” Vision Res. 16, 187–191 (1976). [CrossRef] [PubMed]
  29. M. Hershenson, “Visual system responds to rotational and size-change components of proximal motion patterns,” Percept. Psychophys. 42, 60–64 (1987). [CrossRef] [PubMed]
  30. R. G. Vautin, M. A. Berkley, “Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects,” J. Neurophysiol. 40, 1051–1065 (1977). [PubMed]
  31. D. G. Albrecht, S. B. Farrar, D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex,” J. Physiol. (London) 347, 713–739 (1984).
  32. P. Hammond, G. S. V. Mouat, A. T. Smith, “Neural correlates of motion aftereffects in cat striate cortical neurones: monocular adaptation,” Exp. Brain Res. 72, 1–20 (1988). [CrossRef]
  33. D. Giaschi, R. Douglas, S. Marlin, M. Cynader, “The time-course of direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 70, 2024–2034 (1993). [PubMed]
  34. T. Maddess, S. B. Laughlin, “Adaptation of the motion sensitive neuron H1 is generated locally and governed by contrast,” Proc. R. Soc. London, Ser. B 225, 251–275 (1985). [CrossRef]
  35. D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437–442 (1997). [CrossRef]
  36. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991). [CrossRef] [PubMed]
  37. A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983). [CrossRef] [PubMed]
  38. G. W. Snedecor, W. G. Cochran, Statistical Methods (Iowa State U. Press, Ames, Iowa, 1967).
  39. W. H. Press, A. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).
  40. C. Blakemore, J. P. J. Muncey, R. M. Ridley, “Stimulus specificity in the human visual system,” Vision Res. 13, 1915–1931 (1973). [CrossRef] [PubMed]
  41. M. A. Georgeson, “The effect of spatial adaptation on perceived contrast,” Spatial Vis. 1, 103–112 (1985). [CrossRef]
  42. S. T. Hammett, R. J. Snowden, A. T. Smith, “Perceived contrast as a function of adaptation duration,” Vision Res. 34, 31–40 (1994). [CrossRef] [PubMed]
  43. P. G. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982). [CrossRef] [PubMed]
  44. L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992). [CrossRef] [PubMed]
  45. K. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic, and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996). [CrossRef] [PubMed]
  46. P. J. Bex, A. B. Metha, W. Makous, “Enhanced motion aftereffect for complex motions,” Vision Res. (in press).
  47. W. A. Simpson, A. Newman, W. Aasland, “Equivalent background speed in recovery from motion adaptation,” J. Opt. Soc. Am. A 14, 13–22 (1997). [CrossRef]
  48. S. B. Laughlin, “The role of sensory adaptation in the retina,” J. Exp. Biol. 146, 39–62 (1989). [PubMed]
  49. M. W. Greenlee, F. Heitger, “The functional role of contrast adaptation,” Vision Res. 28, 791–797 (1988). [CrossRef] [PubMed]
  50. H. R. Wilson, R. Humanski, “Spatial frequency adaptation and contrast gain control,” Vision Res. 33, 1133–1149 (1993). [CrossRef] [PubMed]
  51. J. Ross, H. D. Speed, M. J. Morgan, “The effects of adaptation and masking on incremental thresholds for contrast,” Vision Res. 33, 2051–2056 (1993). [CrossRef] [PubMed]
  52. L. M. Maattanen, J. J. Koenderink, “Contrast adaptation and contrast gain control,” Exp. Brain Res. 87, 205–212 (1991). [CrossRef] [PubMed]
  53. P. J. Bex, S. Bedingham, S. T. Hammett, “Enhanced speed sensitivity during adaptation to motion,” Invest. Ophthalmol. Visual Sci. Suppl. 39, S229 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited