OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 16, Iss. 3 — Mar. 1, 1999
  • pp: 591–595

Analysis of high-confinement SiGe/Si waveguides for silicon-based optoelectronics

S. P. Pogossian, L. Vescan, and A. Vonsovici  »View Author Affiliations

JOSA A, Vol. 16, Issue 3, pp. 591-595 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (768 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze theoretically the feasibility of what we believe to be a novel two-dimensional SiGe/Si strained-layer waveguide. The new geometry can be grown by selective epitaxy and has loosened cutoff and critical-thickness restrictions. This geometry could be applied for waveguide-active devices such as LED’s, photodetectors, and modulators. Owing to the high cross section of the guided mode, these devices could be easily interfaced in practice with optical fibers.

© 1999 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(230.7380) Optical devices : Waveguides, channeled
(350.5500) Other areas of optics : Propagation

Original Manuscript: July 13, 1998
Manuscript Accepted: October 28, 1998
Published: March 1, 1999

S. P. Pogossian, L. Vescan, and A. Vonsovici, "Analysis of high-confinement SiGe/Si waveguides for silicon-based optoelectronics," J. Opt. Soc. Am. A 16, 591-595 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. D. Lareau, L. Friedman, R. A. Soref, “Waveguided electro-optical intensity modulation in a Si/GexSi1-x/Si heterojunction bipolar transistor,” Electron. Lett. 26, 1653–1655 (1990). [CrossRef]
  2. B. Schüppert, J. Schmidtchen, A. Splett, U. Fischer, T. Zinke, R. Moosburger, K. Petermann, “Integrated optics in silicon and SiGe heterostructures,” J. Lightwave Technol. 14, 2311–2323 (1996). [CrossRef]
  3. R. A. Soref, F. Namavar, J. P. Lorenzo, “Optical waveguiding in a single-crystal layer of germanium silicon grown on silicon,” Opt. Lett. 15, 270–272 (1990). [CrossRef] [PubMed]
  4. S. F. Pesarcik, G. V. Treyz, S. S. Iyer, J. M. Halbout, “SiGe optical waveguides with 0.5 db/cm losses for single mode fibre optic systems,” Electron. Lett. 28, 159–160 (1990). [CrossRef]
  5. A. Splett, J. Schmidtchen, B. Schüppert, K. Petermann, “Low loss optical ridge waveguides in a strained GeSi epitaxial layer grown on silicon,” Electron. Lett. 26, 1035–1036 (1990). [CrossRef]
  6. Y. M. Liu, P. R. Prucnal, “Deeply etched singlemode SiGe RIB waveguides for Si based optoelectronic integration,” Electron. Lett. 28, 1434–1435 (1992). [CrossRef]
  7. J. Schmidtchen, B. Schüppert, K. Petermann, “Passive integrated optical waveguide structures by Ge diffusion in Si,” J. Lightwave Technol. 12, 842–848 (1994). [CrossRef]
  8. E. Lea, B. L. Weiss, “Characteristics of photoelastic waveguides in SiGe/Si heterostructures,” Electron. Lett. 33, 292–293 (1997). [CrossRef]
  9. Z. Yang, B. L. Weiss, G. Shao, F. Namavar, “Effect of Ge concentration on the propagation characteristics of SiGe/Si heterojunction waveguides,” J. Appl. Phys. 77, 2254–2257 (1995). [CrossRef]
  10. F. Namavar, R. A. Soref, “Optical waveguiding in Si/SiGe/Si heterostructures,” J. Appl. Phys. 70, 3370–3372 (1991). [CrossRef]
  11. M. S. Ünlü, K. Kishino, H. J. Liaw, H. Markoç, “A theoretical study of resonant cavity-enhanced photodetectors with Ge and Si active regions,” J. Appl. Phys. 71, 4049–4057 (1992). [CrossRef]
  12. A. Vonsovici, L. Vescan, R. Apetz, A. Koster, K. Schmidt, “Room temperature photocurrent spectroscopy of SiGe/Si p-i-n photodiodes grown by selective epitaxy,” IEEE Trans. Electron Devices 45, 538–542 (1998). [CrossRef]
  13. A. Splett, T. Zinke, K. Petermann, E. Kasper, H. Kibbel, H. J. Herzog, H. Presting, “Integration of waveguide and photodetectors in SiGe for 1.3 µm operation,” IEEE Photonics Technol. Lett. 6, 59–61 (1994). [CrossRef]
  14. A. Splett, “Integriert-optische Wellenleiter-Photodtektoren-Kombinationen in Silizium-Germanium-Legierungen,” Ph.D dissertation (Technische Universität, Berlin, D83, 1994).
  15. T. Stoica, L. Vescan, M. Goryll, “Electroluminescence of strained SiGe/Si selectively grown above the critical thickness for plastic relaxation,” J. Appl. Phys. 83, 3367–3373 (1998). [CrossRef]
  16. R. Apetz, L. Vescan, R. Loo, R. Carius, H. Lüth, “Electroluminescence from strained Si/SiGe/Si heterostructure diodes,” in Proceedings of the 24th European Solid State Device Research Conference (Edinburgh, Scotland, September 11–15, 1994), p. 653.
  17. R. Apetz, L. Vescan, R. Loo, R. Carius, H. Lüth, “Pho-toluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995). [CrossRef]
  18. R. A. Soref, J. Schmidtchen, K. Petermann, “Large single mode RIB waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991). [CrossRef]
  19. K. Petermann, “Properties of optical RIB waveguides with large cross section,” Archiv Electronik Ubertragungstechnik AEU-30, 139–140 (1976).
  20. S. P. Pogossian, L. Vescan, A. Vonsovici, “The single mode condition for semiconductor rib waveguides with large cross-section,” J. Lightwave Technol. 16, 1851–1853 (1998). [CrossRef]
  21. C. G. Van de Walle, R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system,” Phys. Rev. B 34, 5621–5634 (1986). [CrossRef]
  22. H. Temkin, A. Antreasyan, N. A. Olsson, T. P. Pearsall, J. C. Bean, “Ge0.6Si0.4 rib waveguide avalanche photodetector for 1.3 µm operation,” Appl. Phys. Lett. 49, 809–811 (1986). [CrossRef]
  23. H. Temkin, T. P. Pearsall, J. C. Bean, R. A. Logan, S. Luryi, “GexSi1-x strained layer superlattice waveguide photodetectors operating near 1.3 µm,” Appl. Phys. Lett. 48, 963–965 (1986). [CrossRef]
  24. L. Vescan, “Selective epitaxial growth of SiGe alloys—influence of growth parameters on film properties,” Mater. Sci. Eng., B 28, 1–8 (1994). [CrossRef]
  25. L. Vescan, T. Stoica, M. Goryll, K. Grimm, “Selective epitaxial growth of strained SiGe/Si for optoelectronic devices,” Mater. Sci. Eng., B 51, 166–169 (1998). [CrossRef]
  26. J. W. Matthews, A. E. Blakeslee, “Defects in epitaxial multilayers I. Misfit dislocations,” J. Cryst. Growth 27, 118–125 (1974).
  27. T. Stoica, L. Vescan, “Misfit dislocations in finite lateral size Si1-xGex films grown by selective epitaxy,” J. Cryst. Growth 131, 32–40 (1993). [CrossRef]
  28. R. M. Knox, P. P. Tulios, “Integrated circuits for millimeter through optical frequency range,” in Proceedings of the Magnetic Resonance Imaging Symposium on Submillimeter Waves, Y. Fox, ed. (Polytechnic Press, Brooklyn, N.Y., 1970), pp. 497–516.
  29. S. P. Pogossian, H. Le Gall, J. Gieraltowski, J. Loaëc, “Determination of the parameters of rectangular waveguides by new effective index methods,” J. Mod. Opt. 42, 403–409 (1995). [CrossRef]
  30. P. N. Robson, P. C. Kendall, Rib Waveguide Theory by the Spectral Index Method (Research Studies Press, ltd., Taunton, Somerset, UK, 1990).
  31. A. Vonsovici, “Structures à guides d’ondes optique Si sur isolant (SIMOX) et Si1-xGex/Si pour la modulation optique à λ = 1,3 µm,” Ph.D. thesis (Université Paris Sud, Orsay, France, 1996).
  32. W. Chen, R. Westhoff, R. Reif, “Determination of optical constants of strained Si1-xGex epitaxial layers in the spectral range 0.75–2.75 ev,” Appl. Phys. Lett. 71, 1525–1527 (1997). [CrossRef]
  33. J. C. G. de Sande, A. Rodriguez, T. Rodriguez, “Spectroscopic ellipsometry determination of the refractive index of strained Si1-xGex layers in the near infrared wave-length range (0.9–1.7),” Appl. Phys. Lett. 67, 3402–3404 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited